Project description:Improvement of chilling tolerance is a key strategy to face potential menace from abnormal temperature in rice production, which depends on the signaling network triggered by receptors. However, little is known about the QTL genes encoding membrane complexes for sensing cold. Here, Chilling-tolerance in Gengdao/japonica rice 1 (COG1) was isolated from a chromosome segment substitution line containing a QTL (qCS11-jap) for chilling sensitivity. The major gene COG1 was found to confer chilling tolerance in japonica rice. In natural rice populations, only the haplogroup1 encoded a functional COG1. Evolutionary analysis showed that COG1 originated from Chinese O. Rufipogon and was fixed in japonica rice during domestication. COG1, a membrane-localized LRR-RLP, targeted and activated the kinase OsSERL2 in a cold-induced manner, promoting chilling tolerance. Furthermore, the cold signal transmitted by COG1-OsSERL2 activates OsMAPK3 in the cytoplasm. Our findings reveal a cold-sensing complex, which mediates signaling network for the chilling defense in rice.
Project description:Rice in tropical and sub-tropical areas is often subjected to cold stress at the seedling stage resulting in poor growth and yield loss. In general, japonica rice has stronger cold tolerance (CT) than indica rice. However, several favorite alleles for CT exist in indica rice and can be used to enhance CT under japonica background. Genome-wide gene expression profiling is the efficient way to decipher the molecular genetic mechanism of CT enhancement and provide valuable information for the CT improvement in rice molecular breeding. In this study, the transcriptome of a CT introgressed line (IL) K354 and its recurrent parent C418 under cold stress were comparatively analyzed to explore the possible CT enhancement mechanism of K354.Totally 3184 differentially expressed genes (DEGs) including 195 transcription factors were identified in both lines under cold stress, about half of them were commonly regulated, which were involved in the major cold responsive pathways including OsDREB1s regulon. The K354-specific cold-induced DEGs were mainly related to stimulus response, cellular cell wall organization, and microtubule-based movement process compared with commonly cold-induced DEGs by GO analysis. Moreover, 296 constitutive DEGs with significantly different transcription level between C418 and K354 were detected under both control and cold stress conditions. K354-specific cold-regulated and constitutive DEGs jointly account for the CT improvement of K354. Pathway analysis unraveled up-regulation of starch and sucrose metabolism in both genotypes and presumably weaker defense response to stress in K354 than C418 under cold stress. Candidate genes prediction based on previous putative CT genetic networks revealed genotype-dependent CT enhancement mechanism in CT IL K354 vs recurrent parent C418, including Sir2, OsFAD7, OsWAK112d, and PCD related genes, etc.We propose a hypothesis of the CT enhancement mechanism in rice based on the results in present study. Firstly, a number of cold-regulated genes are able to express constitutively at high level or absent under control condition for standing by the arrival of cold stress. Next, under cold stress slower perception of stress signal from the more cold-tolerant membrane can postpone the activation of defensive system which may have possible negative effects on rice growth. Then, PCD will be launched to sacrifice a few cells for maintaining the basal growth of most cells. Finally, the protective responses on multiple aspects of cold damage will be postponed because of delayed several cold-defensive pathways (i.e. OsDREB1C regulon). It might explain why the recovery capacity of K354 from cold stress to control condition is stronger than C418. The CT enhancement mechanism can be regarded as the possible way to improve CT of japonica rice using indica germplasm in rice breeding program.
Project description:Rice in tropical and sub-tropical areas is often subjected to cold stress at the seedling stage resulting in poor growth and yield loss. In general, japonica rice has stronger cold tolerance (CT) than indica rice. However, several favorite alleles for CT exist in indica rice and can be used to enhance CT under japonica background. Genome-wide gene expression profiling is the efficient way to decipher the molecular genetic mechanism of CT enhancement and provide valuable information for the CT improvement in rice molecular breeding. In this study, the transcriptome of a CT introgressed line (IL) K354 and its recurrent parent C418 under cold stress were comparatively analyzed to explore the possible CT enhancement mechanism of K354.Totally 3184 differentially expressed genes (DEGs) including 195 transcription factors were identified in both lines under cold stress, about half of them were commonly regulated, which were involved in the major cold responsive pathways including OsDREB1s regulon. The K354-specific cold-induced DEGs were mainly related to stimulus response, cellular cell wall organization, and microtubule-based movement process compared with commonly cold-induced DEGs by GO analysis. Moreover, 296 constitutive DEGs with significantly different transcription level between C418 and K354 were detected under both control and cold stress conditions. K354-specific cold-regulated and constitutive DEGs jointly account for the CT improvement of K354. Pathway analysis unraveled up-regulation of starch and sucrose metabolism in both genotypes and presumably weaker defense response to stress in K354 than C418 under cold stress. Candidate genes prediction based on previous putative CT genetic networks revealed genotype-dependent CT enhancement mechanism in CT IL K354 vs recurrent parent C418, including Sir2, OsFAD7, OsWAK112d, and PCD related genes, etc.We propose a hypothesis of the CT enhancement mechanism in rice based on the results in present study. Firstly, a number of cold-regulated genes are able to express constitutively at high level or absent under control condition for standing by the arrival of cold stress. Next, under cold stress slower perception of stress signal from the more cold-tolerant membrane can postpone the activation of defensive system which may have possible negative effects on rice growth. Then, PCD will be launched to sacrifice a few cells for maintaining the basal growth of most cells. Finally, the protective responses on multiple aspects of cold damage will be postponed because of delayed several cold-defensive pathways (i.e. OsDREB1C regulon). It might explain why the recovery capacity of K354 from cold stress to control condition is stronger than C418. The CT enhancement mechanism can be regarded as the possible way to improve CT of japonica rice using indica germplasm in rice breeding program. In this study, the specific gene expression patterns of two genotypes (C418 and K354) at 2h, 6h, 12h, 24h and 48h during cold stress treatment (4 C) and control were characterized by using the Affymetrix rice microarray platform.
Project description:Phosphate starvation/sufficient rice seedling, root or shoot Pi-starvation or Pi-sufficient stresses responsible rice genes, including previously unannotated genes were identified by Illumina mRNA-seq technology. 53 million reads from Pi-starvation or Pi-sufficient root or shoot tissues were uniquely mapped to the rice genome, and these included 40574 RAP3 transcripts in root and 39748 RAP3 transcripts in shoot. We compared our mRNA-seq expression data with that from Rice 44K oligomicroarray, and about 95.5% (root) and 95.4% (shoot) transcripts supported by the array were confirmed expression both by the array and by mRNA-seq, Moreover, 11888 (root) and 11098 (shoot) RAP genes which were not supported by array, were evidenced expression with mRNA-seq. Furthermore, we discovered 8590 (root) and 8193 (shoot) previously unannotated transcripts upon Pi-starvation and/or Pi-sufficient.
Project description:This experiment was designed to identify transcribed regions of japonica subspecies of the rice genome. A series of high-density oligonucleotide tiling arrays that represent sense and antisense strands of the entire nonrepetitive sequence of all the 12 chromosomes were designed to measure genome-wide transcription. A total of 12253842 36mer oligonucleotide probes positioned every 46 nt on average were used for this purpose. The probes were synthesized via maskless photolithography at a feature density of approximately 389,000 probes per slide. The arrays were hybridized with fluorescence-labeled cDNA reverse-transcribed from equal amounts of four selected poly(A)+ RNA population (seedling root, seedling shoot, panicle, and suspension cultured cells). Keywords: tiling array, genome-wide transcription
Project description:This experiment was designed to identify transcribed regions of both japonica and indica rice chromosome 10. A series of high-density oligonucleotide tiling arrays that represent sense and antisense strands of the entire nonrepetitive sequence of the chromosome were used to measure transcriptional activities. A total of 750,282 and 838,816 36mer oligonucleotide probes, positioned every 46 nt on average, were designed to interrogating the japonica and the indica chromosome, respectively. The probes were synthesized via maskless photolithography at a feature density of approximately 389,000 probes per slide. The arrays were hybridized with fluorescence-labeled cDNA reverse-transcribed from equal amounts of four selected poly(A)+ RNA populations, namely, seedling roots, seedling shoots, panicles, and suspension cultured cells of the respective rice subspecies. Keywords: other
Project description:Oryza sativa Japonica (rice) is the staple food for all over world population. At the time of germination, the exposure to light may play an important role in the early development of the rice seedling. In order to survey the genes, their functions and role in biological processes, an RNA-Seq based study of 6 libraries prepared from poly-A rich mRNA fraction was carried out to explore transcriptional programs operating in dark and light conditions. For each treatment type, three individual plants were used as biological replicates.
Project description:Low temperature exposure during early vegetative stages limits rice plant’s growth and development. Most genes previously related to cold tolerance in rice are from the japonica subspecies. To help clarify the mechanisms that regulate cold tolerance in young indica rice plants, comparative transcriptome analysis of 6 h cold-treated leaves from two genotypes, cold-tolerant and cold-sensitive, was performed. The cold-tolerant and cold-sensitive genotypes were previously characterized, and are sister lines (derived from the same crossing).