Project description:The phenomenon that metastatic lesion developed on injured sites has long been recognized in a number of cancers, such as melanoma. The factors associated with wound healing that attract circulating tumor cells have remained unknown, however. A patient with acral lentiginous melanoma presented with a metastatic lesion that appeared 1 month after trauma. To explore the molecular mechanism underlying the promotion of wound metastasis in melanoma, we performed microarray analysis of the metastatic lesions (n = 2) and the primary lesions (n = 3) of the patient. Using Human Genome U133 Plus 2.0 array, we compared global gene expression profiles of tissues derived from the patient’s primary (n = 3) and wound metastatic (n = 2) lesions to search for particular biological functions in genes of which expression intensities were increased in the wound metastasic lesions of melanoma.
Project description:The two most common melanoma histopathologic subtypes, superficial spreading (SSM) and nodular melanoma (NM), are believed to represent sequential phases of linear progression from radial to vertical growth. Studies suggest, however, that SSM and NM are biologically distinct. We utilized an integrative genomic approach to examine the possibility that SSM and NM are the result of independent pathways characterized by unique molecular alterations. Cell lines including SSM, NM, metastatic melanoma, and melanocyte controls were evaluated for copy number changes and differential mRNA expression using single nucleotide polymorphism array (SNP 6.0, Affymetrix) and gene array (U133A 2.0, Affymetrix). Data sets were integrated to identify copy number alterations that correlated with gene expression, and array results were validated using immunohistochemistry on human tissue microarrays (TMAs) and an external data set. The functional effect of genomic deletion was assessed by lentiviral overexpression. Integrative genomics revealed 8 genes in which NM/SSM-specific copy number alterations were correlated with NM/SSM differential gene expression (P<0.05, Spearman’s rank). Pathways analysis of differentially expressed genes (N=114) showed enrichment for metabolic-related processes. SSM-specific genomic deletions (DIS3, MTAP, G3BP2, SEC23IP, USO1) were verified in an expanded panel of cell lines, and forced overexpression of MTAP in SSM resulted in reduced cell growth. Metabolism-related gene ALDH7A1 was verified as overexpressed in NM using human TMAs.The identification of recurrent genomic deletions in SSM not present in NM challenges the linear model of melanoma progression and supports the unique molecular classification of SSM and NM. Gene expression profiling using Affymetrix U133A 2.0 arrays was performed on 18 melanoma cell lines including 2 primary superficial spreading melanoma, 2 primary nodular melanoma, 2 metastatic nodular melanoma, and 12 metastatic cell lines. Four melanocyte control lines were also evaluated including 2 immortalized melanocyte cell lines (Hermes 1 and 2B) and 2 normal melanocyte lines cultured from neonatal foreskin (HEM-N and HEM-LP).
Project description:Melanoma cell lines were genotyped to evaluate copy number differences between nodular melanoma (NM) and superficial spreading melanoma (SSM). Cell lines were also evaluated for copy number alterations in the SKP2/p27 axis. Affymetrix SNP arrays were performed according to manufacturer's instructions using DNA extracted from 18 melanoma cell lines and 4 melanocyte controls. Affymetrix SNP6.0 Array data for melanoma cell lines Copy number analysis of Affymetrix SNP 6.0 arrays was performed on 18 melanoma cell lines including 2 primary superficial spreading melanoma, 2 primary nodular melanoma, 2 metastatic nodular melanoma, and 12 metastatic cell lines. Four melanocyte control lines were also evaluated including 2 immortalized melanocyte cell lines (Hermes 1 and 2B) and 2 normal melanocyte lines cultured from neonatal foreskin (HEM-N and HEM-LP) that were used to construct the baseline for copy number analysis.
Project description:84 NSCLC cell lines were collected from various sources (Supplemental Table 1) and formed the basis for all subsequent experiments. Cell lines were derived from tumors representing all major subtypes of NSCLC tumors, including adenocarcinoma, squamous-cell carcinoma and large-cell carcinoma. The genomic landscape of these cell lines was characterized by analyzing gene copy number alterations using high-resolution single-nucleotide polymorphism (SNP) arrays (250K Sty1). We used the statistical algorithm Genomic Identification of Significant Targets in Cancer (GISTIC) to distinguish biologically relevant lesions from background noise. The application of GISTIC revealed 16 regions of recurrent, high-level copy number gain (inferred copy number > 2.14) and 20 regions of recurrent copy number loss (inferred copy number < 1.86)
Project description:Recurrent karyotypic abnormalities are a characteristic feature of cervical cancer (CC) cells, which may result in deregulated expression of important genes that contribute to tumor initiation and progression. To examine the role of genomic copy number alterations, we surveyed genetic lesions in CC utilizing single nucleotide polymorphism (SNP) array. We identified specific genetic alterations associated with CC. These data will be useful in identification of target altered genes, novel markers for predicting high risk precancerous lesions to invasive cancer, comparison of copy number alterations with gene expression changes can provide gene targets for pharmacologic intervention. We demonstrate specific regions of gene amplification (e.g., 11q22), copy number gains (e.g., 3q, 5p, and 20q), and deletions (e.g., 2q, 11q23) in the present study, which forma a framework for identification of critical genes in CC tumorigenesis. Keywords: Cervical cancer, copy number alterations, HPV type, gene amplification
Project description:The phenomenon that metastatic lesion developed on injured sites has long been recognized in a number of cancers, such as melanoma. The factors associated with wound healing that attract circulating tumor cells have remained unknown, however. A patient with acral lentiginous melanoma presented with a metastatic lesion that appeared 1 month after trauma. To explore the molecular mechanism underlying the promotion of wound metastasis in melanoma, we performed microarray analysis of the metastatic lesions (n = 2) and the primary lesions (n = 3) of the patient.