Project description:The goal of this study was to compare the transcriptome (RNA-seq) of EGFR TKI sensitive NSCLC cells with that of cells with acquired resistance to erlotinib. HCC827 and HCC4006 cells were continuously cultured in erlotinib until erlotinib resistant (ER) variants emerged. All ER variants were negative for T790M. RNA from parental and ER cells was isolated for transcriptomic profiling. RNA-seq analysis reveals that EGFR TKI resistance is associated with a mesenchymal gene expression signature.
Project description:Elevated expression and activity of the epidermal growth factor receptor (EGFR) is associated with development and progression of head and neck cancer (HNC) and a poor prognosis. Clinical trials with EGFR tyrosine kinase inhibitors (TKIs; eg. erlotinib) have been disappointing in HNC. To investigate the mechanisms mediating resistance to these agents, we developed a HNC cell line (HN5-ER) with acquired erlotinib resistance. In contrast to parental HN5 HNC cells, HN5-ER cells exhibited an epithelial-mesenchymal (EMT) phenotype with increased migratory potential, reduced E-cadherin and epithelial-associated miRNAs, and elevated vimentin expression. Phosphorylated RTK profiling identified Axl activation in HN5-ER cells. Growth and migration of HN5-ER cells was blocked with a specific Axl inhibitor, R428, and R428 re-sensitized HN5-ER cells to erlotinib. Microarray analysis of HN5-ER cells confirmed the EMT phenotype associated with acquired erlotinib resistance, and identified activation of gene expression associated with cell migration and inflammation pathways. Moreover, increased expression and secretion of interleukin (IL)-6 and IL-8 in HN5-ER cells suggested a role for inflammatory cytokine signaling in EMT and erlotinib resistance. Expression of the tumor suppressor miR-34a was reduced in HN5-ER cells and increasing its expression abrogated Axl expression and reversed erlotinib resistance. Finally, analysis of 302 HNC patients revealed that high tumor Axl mRNA expression was associated with poorer survival (HR 1.66, p=0.007). In summary, our results identify Axl as a key mediator of acquired erlotinib resistance in HNC and suggest that therapeutic inhibition of Axl by small molecule drugs or specific miRNAs might overcome anti-EGFR therapy resistance. Differential gene expression between parental and acquired erlotinib resistant head and neck cancer cell lines of HN5.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:We characterized the gene expression profile of Epithelial Growth Factor Receptor (EGFR) inhibitor (Erlotinib)-sensitive and resistant human NSCLC cell lines. Total RNA was extracted from the cell lines and expression profiles were studied by Agilent microarray analysis. Wide changes in gene expression profiles occur in the Erlotinib-resistant cell lines when compared with their parental cell lines (HCC827 and HCC4006).
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.