Project description:The Pacific walrus is a large benthivore with an annual range extending across the continental shelves of the Bering and Chukchi Seas. We used a discrete choice model to estimate site selection by adult radio-tagged walruses relative to the availability of the caloric biomass of benthic infauna and sea ice concentration in a prominent walrus wintering area in the northern Bering Sea (St. Lawrence Island polynya) in 2006, 2008, and 2009. At least 60% of the total caloric biomass of dominant macroinfauna in the study area was composed of members of the bivalve families Nuculidae, Tellinidae, and Nuculanidae. Model estimates indicated walrus site selection was related most strongly to tellinid bivalve caloric biomass distribution and that walruses selected lower ice concentrations from the mostly high ice concentrations that were available to them (quartiles: 76%, 93%, and 99%). Areas with high average predicted walrus site selection generally coincided with areas of high organic carbon input identified in other studies. Projected decreases in sea ice in the St. Lawrence Island polynya and the potential for a concomitant decline of bivalves in the region could result in a northward shift in the wintering grounds of walruses in the northern Bering Sea.
Project description:BackgroundPacific walruses are found in Arctic regions of the Chukchi and Bering Sea where rapid changes in environmental conditions resulting in loss of sea ice are occurring. Therefore, accurate life history data are crucial for species management plans and longitudinal data collected over the lives of individual walruses housed in zoos and aquaria provide otherwise difficult to obtain biological information.ResultsWhile similar at birth, Gompertz regression curves indicated that males grew faster than females (p < 0.0001) in weight (99 kg vs 57.6 kg/y) and length (26.9 cm vs 26.3 cm/y) with physical differences being detected by age 3 for weight and age 7 for length. Males reached adult weight at 13.5 ± 3.3 y and females by age 12.3 ± 2.3 y. The mean age at first ovulation and at first conception occurred at 8.8 y and 9.6 y. Greater than 75% of all conceptions and calving occurred between February and March and from May to June, respectively. Mean gestation lasted 423 d and false pregnancies lasted at least 169 d with a decrease (p < 0.05) in serum progesterone concentration between false pregnancy and pregnancy occurring within 6 months after ovulation. Based on these results, we estimated embryonic diapause to last from 120 to 139 days, and fetal growth last ~ 284 days. All males older than 8 y had an increase in serum testosterone and body weight that was highest in February and lowest in July. Overall, no differences were observed between male and female survival, with a mean (± SEM) life expectancy of 19.5 ± 1.5 y, respectively. Currently, the oldest male and female captive walruses are 40 and 43 y, respectively.ConclusionsData provided herein include details of life history characteristics of zoo and aquaria housed walruses that are useful for wild population recovery models. In particular, results on survivorship and the identification of the most vulnerable period for calf survival can help with model development and suggests that for recovery to occur birthing locations for this species must be protected.
Project description:ObjectivesMethylmercury metabolism was investigated in Pacific walruses (Odobenus rosmarus divergens) from St. Lawrence Island, Alaska, United States.MethodsTotal mercury and methylmercury concentrations were measured in fecal samples and paired colon samples (n = 16 walruses). Gut microbiota composition and diversity were determined using 16S rRNA gene sequencing. Associations between fecal and colon mercury and the 24 most prevalent gut microbiota taxa were investigated using linear models.ResultsIn fecal samples, the median values for total mercury, methylmercury, and %methylmercury (of total mercury) were 200 ng/g, 4.7 ng/g, and 2.5%, respectively, while in colon samples, the median values for the same parameters were 28 ng/g, 7.8 ng/g, and 26%, respectively. In fecal samples, methylmercury was negatively correlated with one Bacteroides genus, while members of the Oscillospirales order were positively correlated with both methylmercury and %methylmercury (of total mercury). In colon samples, %methylmercury (of total mercury) was negatively correlated with members of two genera, Romboutsia and Paeniclostridium.ConclusionsMedian %methylmercury (of total mercury) was 10 times higher in the colon compared to the fecal samples, suggesting that methylmercury was able to pass through the colon into systemic circulation. Fecal total mercury and/or methylmercury concentrations in walruses were comparable to some human studies despite differences in seafood consumption rates, suggesting that walruses excreted less mercury. There are no members (at this time) of the Oscillospirales order which are known to contain the genes to methylate mercury, suggesting the source of methylmercury in the gut was from diet and not in vivo methylation.
Project description:Endocrine profiling is an increasingly utilized tool for detecting pregnancies in wild populations of mammals. Given the difficulty in calculating reproductive rates of Pacific walruses (Odobenus rosmarus divergens) the use of endocrine techniques for determining pregnancy rates could be particularly useful for management of the population. The goals of this study were to 1) determine if progesterone and total estrogen concentrations in ovarian tissues of female walruses could be used to determine reproductive state and 2) determine if walruses undergo a functional postpartum estrus, as is seen in other pinnipeds. Ovaries were collected from female walruses (n = 13) hunted in subsistence hunts by Alaska Native communities. Females were categorized as postpartum, full-term pregnant, pregnant diapause or unbred. Total estrogen concentrations were greatest in unbred (n = 2) and pregnant (n = 2) females. Progesterone concentrations were also nominally larger in unbred (n = 2) than pregnant (n = 2) and postpartum (n = 9) animals. Small samples sizes precluded the use of statistical comparisons among groups. Corpora lutea tissue samples in this study did not reflect the presence of a postpartum estrus in the month of May as postpartum females yielded lower total estrogen concentrations than unbred or pregnant animals. Both unbred animals were in a state of pseudopregnancy, which has not been physiologically described for this species before. The progesterone profiles in late (59 ng/g) and early (140 ng/g) pregnancy were lower than expected and fell within the range of the postpartum females (36-210 ng/g), suggesting low production of the hormone by the corpus luteum during these phases of pregnancy. Profiling reproductive hormones in free-ranging walruses demonstrates that an endocrine approach may be a valuable tool for determining reproductive status of females, however increased sample sizes and time of year must be considered to accurately separate pregnant versus pseudopregnant individuals.
Project description:BackgroundHerpesvirus and poxvirus can infect a wide range of species: herpesvirus genetic material has been detected and amplified in five species of the superfamily Pinnipedia; poxvirus genetic material, in eight species of Pinnipedia. To date, however, genetic material of these viruses has not been detected in walrus (Odobenus rosmarus), another marine mammal of the Pinnipedia clade, even though anti-herpesvirus antibodies have been detected in these animals.Case presentationIn February 2013, a 9-year-old healthy captive female Pacific walrus died unexpectedly at L'Oceanografic (Valencia, Spain). Herpesvirus was detected in pharyngeal tonsil tissue by PCR. Phylogenetic analysis revealed that the virus belongs to the subfamily Gammaherpesvirinae. Poxvirus was also detected by PCR in skin, pre-scapular and tracheobronchial lymph nodes and tonsils. Gross lesions were not detected in any tissue, but histopathological analyses of pharyngeal tonsils and lymph nodes revealed remarkable lymphoid depletion and lymphocytolysis. Similar histopathological lesions have been previously described in bovine calves infected with an alphaherpesvirus, and in northern elephant seals infected with a gammaherpesvirus that is closely related to the herpesvirus found in this case. Intracytoplasmic eosinophilic inclusion bodies, consistent with poxviral infection, were also observed in the epithelium of the tonsilar mucosa.ConclusionTo our knowledge, this is the first molecular identification of herpesvirus and poxvirus in a walrus. Neither virus was likely to have contributed directly to the death of our animal.
Project description:Pacific Walruses (Odobenus rosmarus divergens [Illiger 1815]) are gregarious marine mammals considered to be sentinels of the Arctic because of their dependence on sea ice for feeding, molting, and parturition. Like many other marine mammal species, their population sizes were decimated by historical overhunting in the nineteenth and twentieth centuries. Although they have since been protected from nearly all commercial hunting pressure, they now face rapidly accelerating habitat loss as global warming reduces the extent of summer sea ice in the Arctic. To investigate how genetic variation was impacted by overhunting, we obtained mitochondrial DNA sequences from historic Pacific Walrus samples in Alaska that predate the period of overhunting, as well as from extant populations. We found that genetic variation was unchanged over this period, suggesting Pacific Walruses are resilient to genetic attrition in response to reduced population size, and that this may be related to their high vagility and lack of population structure. Although Pacific Walruses will almost certainly continue to decline in number as the planet warms and summer sea ice is further reduced, they may be less susceptible to the ratcheting effects of inbreeding that typically accompany shrinking populations.