Project description:Plants have developed a complicated resistance system, and they exhibit various defense patterns in response to different attackers. However, the determine factors of plant defense patterns are still not clear. Here, we hypothesized that damage patterns of plant attackers play an important role in determining the plant defense patterns. To test this hypothesis, we selected leafminer, which has a special feeding pattern more similar to pathogen damage than chewing insects, as our model insect, and Arabidopsis thaliana as the response plants. The local and systemic responses of Arabidopsis thaliana to leafminer feeding were investigated using the Affymetrix ATH1 genome array. Damaged leaves of Arabidopsis thaliana for local damage analysis and the intact leaves on the same plant for systemic damage analysis were separately frozen by liquid nitrogen. Then, we used an Affymetrix ATH1 Arabidopsis microarray to study the expression changes pattern of Arabidopsis thaliana to pea leafminers damage, both locally (LI) and systemically (SI). We downloaded data from the web database and used hierarchical clustering to explore the relationships of Arabidopsis thaliana expression pattern to different kinds of attackers.
Project description:Plants have developed a complicated resistance system, and they exhibit various defense patterns in response to different attackers. However, the determine factors of plant defense patterns are still not clear. Here, we hypothesized that damage patterns of plant attackers play an important role in determining the plant defense patterns. To test this hypothesis, we selected leafminer, which has a special feeding pattern more similar to pathogen damage than chewing insects, as our model insect, and Arabidopsis thaliana as the response plants. The local and systemic responses of Arabidopsis thaliana to leafminer feeding were investigated using the Affymetrix ATH1 genome array.
Project description:Plant volatiles can mediate plant-plant communication in the sense that plants attacked by herbivores can signal their unattacked neighbors of danger by emitting HIPVs. We call this the priming effect. Since the plant defense response is a systematic process involving numerous pathways and genes,to characterize the priming process, a time course study using a genome-wide microarray may provide more accurate information about the priming process. Furthermore, to what extent do the priming process and direct defense share similar gene expression profiles or pathways are also not clear. We used microarray to detect the priming effect of plant volatiles to healthy Arabidopsis thaliana, and the effect of direct leafminer feeding to Arabidopsis thalianas. A system using Lima bean plants, from which HIPVs can be effectively induced by leafminer feeding, as emitters and Arabidopsis thaliana as receivers is used to track the priming process between neighbor plants. The Arabisopsis thaliana seedlings were treated by volatiles from leafminer fed lima bean for 24h or 48h for RNA extraction and hybridization on Affymetrix microarrays. The Arabisopsis thaliana seedlings fed by leafminer directly were also collected The for RNA extraction and hybridization on Affymetrix micorarrays. We want to explore the response of Arabidopsis thaliana to priming volatiles during a 24h-48h time course. We also want to compare the effect of priming and direct leafminer feeding.
Project description:Plant volatiles can mediate plant-plant communication in the sense that plants attacked by herbivores can signal their unattacked neighbors of danger by emitting HIPVs. We call this the priming effect. Since the plant defense response is a systematic process involving numerous pathways and genes,to characterize the priming process, a time course study using a genome-wide microarray may provide more accurate information about the priming process. Furthermore, to what extent do the priming process and direct defense share similar gene expression profiles or pathways are also not clear. We used microarray to detect the priming effect of plant volatiles to healthy Arabidopsis thaliana, and the effect of direct leafminer feeding to Arabidopsis thalianas.