Project description:Activating mutations of EGFR have been characterized as important mechanisms for carcinogenesis in a subset of EGFR-dependent non-small cell lung cancers (NSCLC). EGFR tyrosine kinase inhibitors (TKI), such as erlotinib and gefitinib, have dramatic clinical effects on EGFR-addicted lung cancers and are used as first-line therapy for EGFR-mutant tumors. However, eventually all tumors acquire secondary resistance to the drugs and progress. We established a model to better understand mechanisms of acquired resistance. NCI- HCC827 cells are EGFR-mutant and highly erlotinib-sensitive. In this study we exposed HCC827 cells to increasing concentrations of erlotinib and two highly erlotinib-resistant subclones were developed (ER3 and T15-2). In these subclones no acquired alterations of EGFR or MET were found. We hereby performed a gene expression microarray studies to understand changes that might explain mechanisms of resistance. Through these studies we demonstrated in one resistant clone (ER3) overexpression of AXL, a tyrosine kinase implicated in imatinib and lapatinib resistance. Gene expression profilings were measured in NSCLC cell line HCC827 and two erlotinib-resistant HCC827-originated sublines ER3 and T15-2.
Project description:Activating mutations of EGFR have been characterized as important mechanisms for carcinogenesis in a subset of EGFR-dependent non-small cell lung cancers (NSCLC). EGFR tyrosine kinase inhibitors (TKI), such as erlotinib and gefitinib, have dramatic clinical effects on EGFR-addicted lung cancers and are used as first-line therapy for EGFR-mutant tumors. However, eventually all tumors acquire secondary resistance to the drugs and progress. We established a model to better understand mechanisms of acquired resistance. NCI- HCC827 cells are EGFR-mutant and highly erlotinib-sensitive. In this study we exposed HCC827 cells to increasing concentrations of erlotinib and two highly erlotinib-resistant subclones were developed (ER3 and T15-2). In these subclones no acquired alterations of EGFR or MET were found. We hereby performed a gene expression microarray studies to understand changes that might explain mechanisms of resistance. Through these studies we demonstrated in one resistant clone (ER3) overexpression of AXL, a tyrosine kinase implicated in imatinib and lapatinib resistance.
Project description:Acquired resistance represents a bottleneck for effective molecular targeted therapy in lung cancer. Metabolic adaptation is a distinct hallmark of human lung cancer that might contribute to acquired resistance. In this study, we discovered a novel mechanism of acquired resistance to EGFR tyrosine kinase inhibitors (TKI) mediated by IGF2BP3-dependent cross-talk between epigenetic modifications and metabolic reprogramming through the IGF2BP3–COX6B2 axis. IGF2BP3 was upregulated in patients with TKI-resistant non–small cell lung cancer, and high IGF2BP3 expression correlated with reduced overall survival. Upregulated expression of the RNA binding protein IGF2BP3 in lung cancer cells reduced sensitivity to TKI treatment and exacerbated the development of drug resistance via promoting oxidative phosphorylation (OXPHOS). COX6B2 mRNA bound IGF2BP3, and COX6B2 was required for increased OXPHOS and acquired EGFR-TKI resistance mediated by IGF2BP3. Mechanistically, IGF2BP3 bound to the untranslated region of COX6B2 in an m6A-dependent manner to increase COX6B2 mRNA stability. Moreover, the IGF2BP3–COX6B2 axis regulated nicotinamide metabolism, which can alter OXPHOS and promote EGFR-TKI acquired resistance. Inhibition of OXPHOS with IACS-010759, a small-molecule inhibitor, resulted in strong growth suppression in vitro and in vivo in a gefitinib-resistant patient-derived xenograft model. Collectively, these findings suggest that metabolic reprogramming by the IGF2BP3–COX6B2 axis plays a critical role in TKI resistance and confers a targetable metabolic vulnerability to overcome acquired resistance to EGFR-TKIs in lung cancer.
Project description:EGFR mutant non-small cell lung cancer patients disease demonstrates remarkable responses to EGFR targeted therapy, but inevitably they succumb to acquired resistance, which can be complex and difficult to treat. Analyzing acquired resistance through broad molecular testing is crucial to understanding the resistance mechanisms and developing new treatment options. We performed diverse clinical testing on a patient with successive stages of acquired resistance, first to an EGFR inhibitor with MET gene amplification and then subsequently to combination EGFR and MET targeted therapies. A patient-derived cell line obtained at the time of disease progression was used to identify NRAS gene amplification as an additional driver of drug resistance to combination EGFR/MET therapies. Analysis of downstream signaling revealed ERK activation that could only be eliminated by trametinib treatment, while Akt activation could be modulated by various combinations of MET, EGFR and PI3K inhibitors. Combination of an EGFR inhibitor with a MEK inhibitor was identified as a possible treatment option to overcome drug resistance related to NRAS gene amplification.
Project description:EGFR tyrosine kinase inhibitors (EGFR-TKIs) induce a dramastic response in non-small cell lung cancer (NSCLC) patients with the EGFR mutation.However, acquired resistance to EGFR-TKIs in lung cancer cells
Project description:Lung adenocarcinoma cells harboring epidermal growth factor receptor (EGFR) mutations are sensitive to EGFR tyrosine kinase inhibitors (TKIs). Prolonged cancer treatment will induce the development of acquired resistance to EGFR TKI. To gain insight into the molecular mechanisms of EGFR-TKIs resistance, we generate EGFR-TKI-resistant HCC827-8-1 cells to be analyzed by microarray with their parental HCC827cells.
Project description:Lung adenocarcinoma cells harboring epidermal growth factor receptor (EGFR) mutations are sensitive to EGFR tyrosine kinase inhibitors (TKIs). Prolonged cancer treatment will induce the development of acquired resistance to EGFR TKI. To gain insight into the molecular mechanisms of EGFR-TKIs resistance, we generate EGFR-TKI-resistant HCC827-8-1 cells to be analyzed by microarray with their parental HCC827cells. gefitinib resistant HCC827-8-1 cells with three replications; gefitinib-sensitive HCC827 cells with three replications
Project description:Third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), including osimertinib, an irreversible EGFR-TKI, are important treatments for non-small cell lung cancer with EGFR-TKI sensitizing or EGFR T790M resistance mutations. Whilst patients treated with osimertinib show clinical benefit, disease progression and drug resistance are common. Emergence of de novo acquired resistance from a drug tolerant persister (DTP) cell population is one mechanism proposed to explain progression on osimertinib and other targeted cancer therapies. Here we profiled osimertinib DTPs using RNA-seq, ChIP-seq, and ATAC-seq to characterize the features of these cells and performed drug screens to identify therapeutic opportunities.
Project description:Third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), including osimertinib, an irreversible EGFR-TKI, are important treatments for non-small cell lung cancer with EGFR-TKI sensitizing or EGFR T790M resistance mutations. Whilst patients treated with osimertinib show clinical benefit, disease progression and drug resistance are common. Emergence of de novo acquired resistance from a drug tolerant persister (DTP) cell population is one mechanism proposed to explain progression on osimertinib and other targeted cancer therapies. Here we profiled osimertinib DTPs using RNA-seq, ChIP-seq, and ATAC-seq to characterize the features of these cells and performed drug screens to identify therapeutic opportunities.
Project description:Third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), including osimertinib, an irreversible EGFR-TKI, are important treatments for non-small cell lung cancer with EGFR-TKI sensitizing or EGFR T790M resistance mutations. Whilst patients treated with osimertinib show clinical benefit, disease progression and drug resistance are common. Emergence of de novo acquired resistance from a drug tolerant persister (DTP) cell population is one mechanism proposed to explain progression on osimertinib and other targeted cancer therapies. Here we profiled osimertinib DTPs using RNA-seq, ChIP-seq, and ATAC-seq to characterize the features of these cells and performed drug screens to identify therapeutic opportunities.