Project description:Background: While the mechanisms underlying the lactation-induced adaptations of intermediary metabolism and immune response have been extensively studied in rodents and dairy cows, little is known in this regard in sows. Therefore, the present study aimed to explore the lactation-induced changes in hepatic gene expression in sows during lactation. Results: Using a porcine whole-genome microarray a total of 632 differentially expressed genes in the liver of lactating compared to non-lactating sows (each n = 10) could be identified. Enrichment analysis revealed that the differentially expressed genes were mainly involved in fatty acid metabolism, pyruvate metabolism, glutathione metabolism, glycine, serine and threonine metabolism, citrate cycle, glycerophospholipid metabolism, PPAR signaling, nitrogen metabolism, and focal adhesion. The most striking observation with respect to intermediary metabolism was that genes involved in fatty acid catabolism, the catabolism of gluconeogenic amino acids, the citrate cycle and the respiratory chain were up-regulated in the liver of sows during lactation. With respect to immune response, it could be demonstrated that genes encoding acute phase proteins and genes involved in tissue repair were up-regulated and genes encoding focal adhesion molecules were down-regulated in the liver of sows during lactation. Conclusion: The results from this study indicate that energy-generating pathways and pathways involved in the delivery of gluconeogenic substrates are induced in the liver of sows during lactation. The alterations of expression of genes encoding proteins involved in immune response suggest that lactation in sows may cause an adaptive immune response which possibly counteracts hepatic inflammation. For microarray analyses, four RNA pools each, for the non-lactating group (n = 4) and the lactating group (n = 4), were prepared from eight individual sows per group. To each RNA pool, RNA from two different sows per group contributed identical amounts of RNA.
Project description:Large White and Meishan pigs were either non-treated or injected with mammalian 1-24 ACTH (Immediate Synachten, Novartis France) at the dose of 250 µg per animal. Pigs were sacrificed either immediately after capture from their home cage (non-treated animals) or 1 hour following ACTH injection. Adrenal glands were immediately collected from pigs and frozen on dry ice and then stored at -80°C until RNA isolation. Keywords: stress response, adrenal, gene expression, pig
Project description:Regulatory Mechanisms of Atrial Remodeling of Mitral Regurgitation Pigs This study enrolled 6 pigs (age: 18 months) and divided into three groups: mitral regurgitation pigs (MR) (n = 2; 2 males sacrificed 12 months after surgery), MR pigs treated with valsartan (MRV) (n = 2; 2 males age-matched to MR sacrificed 12 months after surgery), and normal control pigs (NC) (n = 2; 2 males age-matched to MR pigs). Valsartan (3.43 mg/kg/day), a type I angiotensin II receptor blocker, was administered from one week before surgery and then daily after surgery in the MRV group. We sought to systemically elucidate critical differences in the alteration of RNA expression pattern between the atrial myocardium of pigs with and without MR, and between the atrial myocardium of MR pigs with and without valsartan using high-density oligonucleotide microarrays and functional network enrichment analysis.
Project description:Gene expression of characteristic chondrogenic markers and miRNA expression were analyzed in cells cultured in differentiation medium and significant differences were found between gelation/PRP microgels and those containing only pure gelatin. We used microarrays to detail the miRNA expression in studied cell cultures for identification the expression of miRNA and study the up- and down-regulated miRNA associated.
Project description:Background: While the mechanisms underlying the lactation-induced adaptations of intermediary metabolism and immune response have been extensively studied in rodents and dairy cows, little is known in this regard in sows. Therefore, the present study aimed to explore the lactation-induced changes in hepatic gene expression in sows during lactation. Results: Using a porcine whole-genome microarray a total of 632 differentially expressed genes in the liver of lactating compared to non-lactating sows (each n = 10) could be identified. Enrichment analysis revealed that the differentially expressed genes were mainly involved in fatty acid metabolism, pyruvate metabolism, glutathione metabolism, glycine, serine and threonine metabolism, citrate cycle, glycerophospholipid metabolism, PPAR signaling, nitrogen metabolism, and focal adhesion. The most striking observation with respect to intermediary metabolism was that genes involved in fatty acid catabolism, the catabolism of gluconeogenic amino acids, the citrate cycle and the respiratory chain were up-regulated in the liver of sows during lactation. With respect to immune response, it could be demonstrated that genes encoding acute phase proteins and genes involved in tissue repair were up-regulated and genes encoding focal adhesion molecules were down-regulated in the liver of sows during lactation. Conclusion: The results from this study indicate that energy-generating pathways and pathways involved in the delivery of gluconeogenic substrates are induced in the liver of sows during lactation. The alterations of expression of genes encoding proteins involved in immune response suggest that lactation in sows may cause an adaptive immune response which possibly counteracts hepatic inflammation.
Project description:Large White and Meishan pigs were either non-treated or injected with mammalian 1-24 ACTH (Immediate Synachten, Novartis France) at the dose of 250 µg per animal. Pigs were sacrificed either immediately after capture from their home cage (non-treated animals) or 1 hour following ACTH injection. Adrenal glands were immediately collected from pigs and frozen on dry ice and then stored at -80°C until RNA isolation. Keywords: stress response, adrenal, gene expression, pig 47 samples