Project description:Deactivation of aHSCs has emerged as a novel and promising therapeutic approach for liver fibrosis. However, our knowledge of the master regulators involved in the deactivation of fibrotic HSCs is still limited. The transcription factor GATA4 has been previously shown to play an important role in embryonic hepatic stellate cells quiescence. We aim to evaluate whether GATA4 is able to revert the active phenotype of LX2 cells. Adenoviruses approaches were used to genetically manipulate Gata4 expression in adult hepatic stellate cells. To analyze changes in gene expression mediated by GATA4 we overexpressed Gata4 in LX2 cells and performed Affimetrix analyses
Project description:Background & Aims: Rapid induction of beta-PDGF receptor (beta-PDGFR) is a core feature of hepatic stellate cell activation, the hallmark of liver fibrogenesis. However, biological consequences of the induction are not well characterized. We aimed to determine the involvement of beta-PDGFR-mediated molecular pathway activation on hepatic stellate cells in liver injury, fibrogenesis, and carcinogenesis in vivo. Methods: Loss and constitutive activation of beta-PDGFR were assessed in mouse models with either a stellate cell-specific beta-PDGFR knockout or the expression of an autoactivating mutation respectively. Liver injury and fibrosis were induced in two mechanistically distinct models: carbontetrachloride (CCl4) treatment and ligation of the common bile duct. Hepatocarcinogenesis with underlying liver injury/fibrosis was assessed by a single dose of diethylnitrosamine (DEN) followed by repeated injections of CCl4. Genome-wide expression profiling was performed isolated stellate cells from these models to determine deregulated pathways. Results: Depletion of beta-PDGFR in hepatic stellate cells led to decreased histological liver injury, serum transaminases, collagen alpha 1(I) and alpha smooth muscle actin expression, and collagen deposition. Stellate cell proliferation was significantly reduced after acute hepatic injury in vivo. In contrast, autoactivation of beta-PDGFR in stellate cells accelerated liver fibrosis, most prominently after 6 weeks of CCl4 induced injury. There was no difference in development of DEN-induced pre-neoplastic loci according to the status of beta-PDGFR. Conclusions: Depletion of beta-PDGFR in hepatic stellate cells attenuated the development of liver injury, fibrosis, and stellate cell proliferation in multiple animal models, whereas the constitutive activation of beta-PDGFR enhanced fibrosis. However, manipulation of beta-PDGFR alone did not reduce development of dysplastic nodules. These findings indicate that titration of receptor beta-PDGFR expression on stellate cells parallels fibrosis and injury, but may not impact the development of hepatic neoplasia alone. Hepatic stellate cells were isolated from liver of beta-PDGFR-wild-type or knockout mice, and treated with beta-PDGF ligand or vehicle control.
Project description:Sex differences in liver gene expression are dictated by sex-differences in circulating growth hormone (GH) profiles. Presently, the pituitary hormone dependence of mouse liver gene expression was investigated on a global scale to discover sex-specific early GH response genes that might contribute to sex-specific regulation of downstream GH targets and to ascertain whether intrinsic sex-differences characterize hepatic responses to plasma GH stimulation. RNA expression analysis using 41,000-feature microarrays revealed two distinct classes of sex-specific mouse liver genes: genes subject to positive regulation (class-I) and genes subject to negative regulation by pituitary hormones (class-II). Genes activated or repressed in hypophysectomized (Hypox) mouse liver within 30-90min of GH pulse treatment at a physiological dose were identified as direct targets of GH action (early response genes). Intrinsic sex-differences in the GH responsiveness of a subset of these early response genes were observed. Notably, 45 male-specific genes, including five encoding transcriptional regulators that may mediate downstream sex-specific transcriptional responses, were rapidly induced by GH (within 30min) in Hypox male but not Hypox female mouse liver. The early GH response genes were enriched in 29 male-specific targets of the transcription factor Mef2, whose activation in hepatic stellate cells is associated with liver fibrosis leading to hepatocellular carcinoma, a male-predominant disease. Thus, the rapid activation by GH pulses of certain sex-specific genes is modulated by intrinsic sex-specific factors, which may be associated with prior hormone exposure (epigenetic mechanisms) or genetic factors that are pituitary-independent, and could contribute to sex-differences in predisposition to liver cancer or other hepatic pathophysiologies.
Project description:Metabolomic analysis on hepatic stellate cells isolated from PBS- or thioacetamide (TAA)-treated wild-type and Cyp1b1 knockout mice was performed to determine the metabolic basis by which CYP1B1 ablation inhibits HSC activation and liver fibrosis.
Project description:Acetaminophen is a widely used antipyretic and analgesic drug, and its overdose is the leading cause of drug-induced acute liver failure. This study aimed to investigate the effect and mechanism of Lacticaseibacillus casei Shirota (LcS), an extensively used and highly studied probiotic, on acetaminophen-induced acute liver injury. C57BL/6 mice were gavaged with LcS suspension or saline once daily for 7 days before the acute liver injury was induced via intraperitoneal injection of 300 mg/kg acetaminophen. The results showed that LcS significantly decreased acetaminophen-induced liver and ileum injury, as demonstrated by reductions in the increases in aspartate aminotransferase, total bile acids, total bilirubin, indirect bilirubin and hepatic cell necrosis. Moreover, LcS alleviated the acetaminophen-induced intestinal mucosal permeability, elevation in serum IL-1α and lipopolysaccharide, and decreased levels of serum eosinophil chemokine (eotaxin) and hepatic glutathione levels. Furthermore, analysis of the gut microbiota and metabolome showed that LcS reduced the acetaminophen-enriched levels of Cyanobacteria, Oxyphotobacteria, long-chain fatty acids, cholesterol and sugars in the gut. Additionally, the transcriptome and proteomics showed that LcS mitigated the downregulation of metabolism and immune pathways as well as glutathione formation during acetaminophen-induced acute liver injury. This is the first study showing that pretreatment with LcS alleviates acetaminophen-enriched acute liver injury, and it provides a reference for the application of LcS.
Project description:We profile the transcriptomes of ~30,000 mouse single cells to deconvolve the hepatic mesenchyme in healthy and fibrotic liver at high resolution. We reveal spatial zonation of hepatic stellate cells across the liver lobule, designated portal vein-associated HSC and central vein-associated HSC, and uncover an equivalent functional zonation in a mouse model of centrilobular fibrosis. Our work illustrates the power of single-cell transcriptomics to resolve key collagen-producing cells driving liver fibrosis with high precision.
Project description:Increased liver de novo lipogenesis (DNL) is a hallmark of nonalcoholic steatohepatitis (NASH). A key enzyme controlling DNL upregulated in NASH is ATP citrate lyase (ACLY). In mice, inhibition of ACLY reduces liver steatosis, ballooning and fibrosis and inhibits activation of hepatic stellate cells. Glucagon like peptide-1 receptor (GLP-1R) agonists lower body mass, insulin resistance and steatosis without improving fibrosis. Here, we find that combining an inhibitor of liver ACLY, bempedoic acid, and the GLP-1R agonist liraglutide reduces liver steatosis, hepatocellular ballooning, and hepatic fibrosis in a mouse model of NASH. Liver RNA analyses revealed additive downregulation of pathways that are predictive of NASH resolution, reductions in the expression of prognostically significant genes compared to clinical NASH samples, and a predicted gene signature profile that supports fibrosis resolution. These findings support further investigation of this combinatorial therapy to treat obesity, insulin resistance, hypercholesterolemia, steatohepatitis, and fibrosis in people with NASH.
Project description:Increased liver de novo lipogenesis (DNL) is a hallmark of nonalcoholic steatohepatitis (NASH). A key enzyme controlling DNL upregulated in NASH is ATP citrate lyase (ACLY). In mice, inhibition of ACLY reduces liver steatosis, ballooning and fibrosis and inhibits activation of hepatic stellate cells. Glucagon like peptide-1 receptor (GLP-1R) agonists lower body mass, insulin resistance and steatosis without improving fibrosis. Here, we find that combining an inhibitor of liver ACLY, bempedoic acid, and the GLP-1R agonist liraglutide reduces liver steatosis, hepatocellular ballooning, and hepatic fibrosis in a mouse model of NASH. Liver RNA analyses revealed additive downregulation of pathways that are predictive of NASH resolution, reductions in the expression of prognostically significant genes compared to clinical NASH samples, and a predicted gene signature profile that supports fibrosis resolution. These findings support further investigation of this combinatorial therapy to treat obesity, insulin resistance, hypercholesterolemia, steatohepatitis, and fibrosis in people with NASH.