Project description:The current outbreak of coronavirus disease-2019 (COVID-19) caused by SARS-CoV-2 poses unparalleled challenges to global public health. SARS-CoV-2 is a Betacoronavirus, one of four genera belonging to the Coronaviridae subfamily Orthocoronavirinae. Coronaviridae, in turn, are members of the order Nidovirales, a group of enveloped, positive-stranded RNA viruses. Here we present a systematic phylogenetic and evolutionary study based on protein domain architecture, encompassing the entire proteomes of all Orthocoronavirinae, as well as other Nidovirales. This analysis has revealed that the genomic evolution of Nidovirales is associated with extensive gains and losses of protein domains. In Orthocoronavirinae, the sections of the genomes that show the largest divergence in protein domains are found in the proteins encoded in the amino-terminal end of the polyprotein (PP1ab), the spike protein (S), and many of the accessory proteins. The diversity among the accessory proteins is particularly striking, as each subgenus possesses a set of accessory proteins that is almost entirely specific to that subgenus. The only notable exception to this is ORF3b, which is present and orthologous over all Alphacoronaviruses. In contrast, the membrane protein (M), envelope small membrane protein (E), nucleoprotein (N), as well as proteins encoded in the central and carboxy-terminal end of PP1ab (such as the 3C-like protease, RNA-dependent RNA polymerase, and Helicase) show stable domain architectures across all Orthocoronavirinae. This comprehensive analysis of the Coronaviridae domain architecture has important implication for efforts to develop broadly cross-protective coronavirus vaccines.
Project description:During the recent severe acute respiratory (SARS) outbreak, the etiologic agent was identified as a new coronavirus (CoV). We have isolated a SARS-associated CoV (SARS-CoV) strain by injecting Vero cells with a sputum specimen from an Italian patient affected by a severe pneumonia; the patient traveled from Vietnam to Italy in March 2003. Ultrastructural analysis of infected Vero cells showed the virions within cell vesicles and around the cell membrane. The full-length viral genome sequence was similar to those derived from the Hong-Kong Hotel M isolate. By using both real-time reverse transcription-polymerase chain reaction TaqMan assay and an infectivity plaque assay, we determined that approximately 360 viral genomes were required to generate a PFU. In addition, heparin (100 microg/mL) inhibited infection of Vero cells by 50%. Overall, the molecular and biologic characteristics of the strain HSR1 provide evidence that SARS-CoV forms a fourth genetic coronavirus group with distinct genomic and biologic features.
Project description:The Coronaviridae family comprises large enveloped single-stranded RNA viruses. The known human-infecting coronaviruses; severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), novel SARS-CoV-2, human coronavirus (HCoV)-NL63, HCoV-229E, HCoV-OC43 and HKU1 cause mild to severe respiratory infections. The viral diseases induced by mammalian and avian viruses from Coronaviridae family pose significant economic and public health burdens. Due to increasing reports of viral resistance, co-infections and the emergence of viral epidemics such as COVID-19, available antiviral drugs show low or no efficacy, and the production of new treatments or vaccines are also challenging. Therefore, demand for the development of novel antivirals has considerably increased. In recent years, antiviral peptides have generated increasing interest as they are from natural and computational sources, are highly specific and effective, and possess the broad-spectrum activity with minimum side effects. Here, we have made an effort to compile and review the antiviral peptides with activity against Coronaviridae family viruses. They were divided into different categories according to their action mechanisms, including binding/attachment inhibitors, fusion and entry inhibitors, viral enzyme inhibitors, replication inhibitors and the peptides with direct and indirect effects on the viruses. Reported studies suggest optimism with regard to the design and production of therapeutically promising antiviral drugs. This review aims to summarize data relating to antiviral peptides particularly with respect to their applicability for development as novel treatments.
Project description:Presence of Simple Sequence Repeats (SSRs), both in genic and intergenic regions, have been widely studied in eukaryotes, prokaryotes, and viruses. In the current study, we undertook a survey to analyze the frequency and distribution of microsatellites or SSRs in multiple genomes of Coronaviridae members. We successfully identified 919 SSRs with length ≥12 bp across 55 reference genomes majority of which (838 SSRs) were found abundant in genic regions. The in-silico analysis further identified the preferential abundance of hexameric SSRs than any other size-based motif class. Our analysis shows that the genome size and GC content of the genome had a weak influence on SSR frequency and density. However, we find a positive correlation of SSRs GC content with genomic GC content. We also report relatively low abundances of all theoretically possible 501 repeat motif classes in all the genomes of Coronaviridae. The majority of SSRs were AT-rich. Overall, we see an underrepresentation of SSRs across the genomes of Coronaviridae. Besides, our integrative study highlights the presence of SSRs in ORF1ab (nsp3, nsp4, nsp5A_3CLpro and nsp5B_3CLpro, nsp6, nsp10, nsp12, nsp13, & nsp15 domains), S, ORF3a, ORF7a, N & 3' UTR regions of SARS-CoV-2 and harbours multiple mutations (3'UTR and ORF1ab SSRs serving as major mutational hotspots). This indicates the genic SSRs are under selection pressure against mutations that might alter the reading frame and at the same time responsible for rapid protein evolution. Our preliminary results indicate the significance of the limited repertoire of SSRs in the genomes of Coronaviridae.