Project description:Viruses in the Ebolavirus and Marburgvirus genera (family Filoviridae) have been associated with large outbreaks of hemorrhagic fever in human and nonhuman primates. The first documented cases occurred in primates over 45 years ago, but the amount of virus genetic diversity detected within bat populations, which have recently been identified as potential reservoir hosts, suggests that the filoviruses are much older. Here, detailed Bayesian coalescent phylogenetic analyses are performed on 97 whole-genome sequences, 55 of which are newly reported, to comprehensively examine molecular evolutionary rates and estimate dates of common ancestry for viruses within the family Filoviridae. Molecular evolutionary rates for viruses belonging to different species range from 0.46 × 10(-4) nucleotide substitutions/site/year for Sudan ebolavirus to 8.21 × 10(-4) nucleotide substitutions/site/year for Reston ebolavirus. Most recent common ancestry can be traced back only within the last 50 years for Reston ebolavirus and Zaire ebolavirus species and suggests that viruses within these species may have undergone recent genetic bottlenecks. Viruses within Marburg marburgvirus and Sudan ebolavirus species can be traced back further and share most recent common ancestors approximately 700 and 850 years before the present, respectively. Examination of the whole family suggests that members of the Filoviridae, including the recently described Lloviu virus, shared a most recent common ancestor approximately 10,000 years ago. These data will be valuable for understanding the evolution of filoviruses in the context of natural history as new reservoir hosts are identified and, further, for determining mechanisms of emergence, pathogenicity, and the ongoing threat to public health.
Project description:Recent studies have indicated that bats are hosts to diverse filoviruses. Currently, no pan-filovirus molecular assays are available that have been evaluated for the detection of all mammalian filoviruses. In this study, a two-step pan-filovirus SYBR Green real-time PCR assay targeting the nucleoprotein gene was developed for filovirus surveillance in bats. Synthetic constructs were designed as representatives of nine filovirus species and used to evaluate the assay. This assay detected all synthetic constructs included with an analytical sensitivity of 3-31.7 copies/reaction and was evaluated against the field collected samples. The assay's performance was similar to a previously published probe based assay for detecting Ebola- and Marburgvirus. The developed pan-filovirus SYBR Green assay will allow for more affordable and sensitive detection of mammalian filoviruses in bat samples.
Project description:We obtained the near-complete genome sequence of a novel virus, Lötschberg virus (LTBV), from a European perch metatranscriptome. Genome organization and pairwise sequence comparison indicated that LTBV represents a tentative new species and genus of the mononegaviral family Filoviridae.
Project description:This study aims to investigate the DNA methylation patterns at transcription factor binding regions and their evolutionary conservation with respect to binding activity divergence. We combined newly generated bisulfite-sequencing experiments in livers of five mammals (human, macaque, mouse, rat and dog) and matched publicly available ChIP-sequencing data for five transcription factors (CEBPA, HNF4a, CTCF, ONECUT1 and FOXA1). To study the chromatin contexts of TF binding subjected to distinct evolutionary pressures, we integrated publicly available active promoter, active enhancer and primed enhancer calls determined by profiling genome wide patterns of H3K27ac, H3K4me3 and H3K4me1.
Project description:Whole genome sequencing of the Arabidopsis thaliana dot5-1 transposon insertion line described in Petricka et al 2008 The Plant Journal 56(2): 251-263.