Project description:Digestive Gland Samples: A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in digestive gland of R. philippinarum. Total RNA was extracted from three (3) independent biological replicates of digestive gland for each sampling site, each consisting of tissue pools of five (5) animals. Statistical analysis with SAM (Significance Analysis of Microarray) identified1,127 probes differentially expressed. Gills Samples: A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in gills of R. philippinarum. Total RNA was extracted from three (3) independent biological replicates of gills for each sampling site, each consisting of tissue pools of five (5) animals. Statistical analysis with SAM (Significance Analysis of Microarray) identified1,127 probes differentially expressed. Digestive Gland Samples: In this study, we analyzed six (6) samples, three (3) pools of digestive gland of Manila clam sampled in Marghera and three(3) pools of digestive gland of Manila clam sampled in Alberoni. Gene expression profiling was performed using the Agilent-019810 Ruditapes philippinarum Oligo Microarray platform (GPL10900) based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal. Gills Samples: In this study, we analyzed six (6) samples, three (3) pools of gills of Manila clam sampled in Marghera and three(3) pools of gills of Manila clam sampled in Alberoni. Gene expression profiling was performed using the Agilent-019810 Ruditapes philippinarum Oligo Microarray platform (GPL10900) based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:A Ruditapes philippinarum microarray platform was developed to identify digestive gland gene expression profiles in response to 100 µg /l and 1000 µg/l ibuprofen exposure. A comparative analysis of gene expression was conducted in Manila clam R.philippinarum exposed to ibuprofen.Clams were exposed for 1, 3, 5 and 7 days to 0, 100 and 1000 µg IBU/l, and digestive gland gene expression were measured. Gene expression profiling was performed using an Manila clam-specific oligo-DNA microarray of 14,156 probes based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:Digestive Gland Samples: A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in digestive gland of R. philippinarum. Total RNA was extracted from three (3) independent biological replicates of digestive gland for each sampling site, each consisting of tissue pools of five (5) animals. Statistical analysis with SAM (Significance Analysis of Microarray) identified1,127 probes differentially expressed. Gills Samples: A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in gills of R. philippinarum. Total RNA was extracted from three (3) independent biological replicates of gills for each sampling site, each consisting of tissue pools of five (5) animals. Statistical analysis with SAM (Significance Analysis of Microarray) identified1,127 probes differentially expressed.
Project description:A Ruditapes philippinarum microarray platform was developed to identify digestive gland gene expression profiles in response to 100 µg /l and 1000 µg/l ibuprofen exposure.
Project description:A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in gills and digestive gland of R. philippinarum. For each tissue, total RNA was extracted from three (3) independent biological replicates of digestive gland and gills, each consisting of tissue pools of five (5) animals. Statistical analysis with SAM (Significance Analysis of Microarray) identified 8,257 probes differentially expressed between the two different tissues.
Project description:A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in digestive gland of R. philippinarum sampled in four seasons in 4 different areas of Venice Lagoon. For each tissue, total RNA was extracted from four (4) independent biological replicates of digestive gland, each consisting of tissue pools of five (5) animals.
Project description:A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in gills and digestive gland of R. philippinarum. For each tissue, total RNA was extracted from three (3) independent biological replicates of digestive gland and gills, each consisting of tissue pools of five (5) animals. Statistical analysis with SAM (Significance Analysis of Microarray) identified 8,257 probes differentially expressed between the two different tissues. In this study, we analyzed six (6) samples, three (3) pools of digestive gland and three (3) pools of gills. Gene expression profiling was performed using the Agilent-019810 Ruditapes philippinarum Oligo Microarray platform (GPL10900) based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in digestive gland of R. philippinarum sampled in four seasons in 4 different areas of Venice Lagoon. For each tissue, total RNA was extracted from four (4) independent biological replicates of digestive gland, each consisting of tissue pools of five (5) animals. In this study, we analyzed 64 samples (pools of 5 digestive gland). Gene expression profiling was performed using the Agilent-027304 Ruditapes philippinarum Oligo Microarray platform (GPL10900) based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:The Manila clam (Ruditapes philippinarum) is a cultured bivalve species with high worldwide commercial importance. Nevertheless, diseases can cause high economical losses. For this reason, the study of immune genes in bivalve mollusks has increased in the last years. The present work describes the construction of the first R. philippinarum microarray containing immune-related hemocyte sequences and its application for the study of the gene transcription profiles of hemocytes from clams challenged with Vibrio alginolyticus through a time course.
Project description:Four pools of digestive glands were treated as biological replicates in order to evaluate the repeatability of Ruditapes philippinarum oligo microarray platform.