Project description:Axillary bud outgrowth determines plant shoot architecture and is under control of endogenous hormones and a fine-tuned gene expression network. Some genes associated with shoot development are known targets of small RNAs (sRNAs). Although it is well known that sRNAs act broadly in plant development, our understanding about their roles in vegetative bud outgrowth remains limited. Moreover, the expression profiles of microRNAs (miRNAs) and their targets in axillary buds are unknown. In this study, we employed next-generation sequencing, gene expression analysis and metabolite profiling to identify sRNAs and quantify distinct hormones, respectively, in vegetative axillary buds of the tropical biofuel crop sugarcane (Saccharum spp.). Differential accumulation of abscisic acid (ABA), gibberellins (GA), and cytokinins indicates a dynamic balance of these hormones during sugarcane bud outgrowth. A number of repeat-associated siRNAs generated from distinct transposable elements and genes were highly expressed in both inactive and developing buds. RT-qPCR results revealed that specific miRNAs were differentially expressed in developing buds and some correlate negatively with the expression of their targets. Expression patterns of miR159 and its experimentally confirmed target GAMYB suggest they play roles in regulating ABA and GA-signaling pathways during bud outgrowth. Our work reveals, for the first time, differences in composition and expression profiles of small RNAs and targets between inactive and developing buds that, together with the endogenous balance of specific hormones, may be important to regulate axillary bud outgrowth in plants. Examination of small RNA populations in vegetative axillary buds of the tropical biofuel crop sugarcane (Saccharum spp.)
Project description:Axillary bud outgrowth determines plant shoot architecture and is under control of endogenous hormones and a fine-tuned gene expression network. Some genes associated with shoot development are known targets of small RNAs (sRNAs). Although it is well known that sRNAs act broadly in plant development, our understanding about their roles in vegetative bud outgrowth remains limited. Moreover, the expression profiles of microRNAs (miRNAs) and their targets in axillary buds are unknown. In this study, we employed next-generation sequencing, gene expression analysis and metabolite profiling to identify sRNAs and quantify distinct hormones, respectively, in vegetative axillary buds of the tropical biofuel crop sugarcane (Saccharum spp.). Differential accumulation of abscisic acid (ABA), gibberellins (GA), and cytokinins indicates a dynamic balance of these hormones during sugarcane bud outgrowth. A number of repeat-associated siRNAs generated from distinct transposable elements and genes were highly expressed in both inactive and developing buds. RT-qPCR results revealed that specific miRNAs were differentially expressed in developing buds and some correlate negatively with the expression of their targets. Expression patterns of miR159 and its experimentally confirmed target GAMYB suggest they play roles in regulating ABA and GA-signaling pathways during bud outgrowth. Our work reveals, for the first time, differences in composition and expression profiles of small RNAs and targets between inactive and developing buds that, together with the endogenous balance of specific hormones, may be important to regulate axillary bud outgrowth in plants.
Project description:In plant axillary bud dormancy and outgrowth are regulated by phytohormones, but it is still unknown about its molecular mechanism. We reveal that Arabidopsis axillary buds located at axil of rosette leaves show dormancy and that this is broken by the decapitation of main stem, resulting in the bud outgrowth. To investigate about the molecular mechanisms of dormancy and outgrowth, we carried out gene expression analysis during axillary shoot outgrowth in Arabidopsis wild type Columbia accession. Since axillary buds did not initiate outgrowth (dormancy) at 5 day after bolting of main stem, we used 5-day bolted plants as a control (before decapitation). Then, main stems were decapitated, and axillary shoots were collected at 24 hours after decapitation (named as growing shoot). Total RNA was prepared from either control or growing shoots and used for the microarray analysis. We carried out duplicate microarray analysis using independent plant materials.Ref):Tatematsu et al., Plant Physiol. 138: 757-766 (2005). Keywords: Expression profilling by array 4 samples were used in this experiment
Project description:In plant axillary bud dormancy and outgrowth are regulated by phytohoromones, but it is still unknown about its molecular mechanism. We reveal that Arabidopsis axillary buds located at axil of rosette leaves show dormancy and that this is broken by the decapitation of main stem, resulting in the bud outgrowth. To investigate about the molecular mechanisms of dormancy and outgrowth, we carried out gene expression analysis during axillary shoot outgrowth in Arabidopsis wild type Columbia accession. Since axillary buds did not initiate outgrowth (dormancy) at 5 day after bolting of main stem, we used 5-day bolted plants as a control (before decapitation). Then, main stems were decapitated, and axillary shoots were collected at 24 hours after decapitation (named as growing shoot). Total RNA was prepared from either control or growing shoots and used for the microarray analysis. We carried out duplicate microarray analysis using independent plant materials.Ref):Tatematsu et al., Plant Physiol. 138: 757-766 (2005). Keywords: Expression profilling by array