Project description:Dermabacter hominis was the cause of a peritoneal dialysis-associated peritonitis. D. hominis was identified by phenotypic criteria and by sequencing the 16S rRNA gene. Clinical cure was achieved with cefuroxime treatment despite the isolate's reduced susceptibility to this drug (MIC, 12 mg/liter) on in vitro testing. The successful treatment was probably due to the high concentrations attained by intraperitoneal administration of the drug.
Project description:Strain FF11(T) was isolated from the wound on a researcher's finger who had been bitten by a fish (Protopterus annectens) in Senegal. Analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry did not provide any identification, but the 16S rRNA sequence exhibited 97.9% identity with Dermabacter hominis. Phenotypic and genomic analyses demonstrated that strain FF11(T) is Gram-positive, facultatively anaerobic, nonmotile and non-spore forming; it exhibited a genome of 2 222 902 bp encoding 2074 protein-coding and 50 RNA genes, with a 63.2% G+C content. We consequently proposed the creation of Dermabacter indicis strain FF11(T).
Project description:Background: Ependymomas encompass multiple, clinically relevant tumor types based on localization and molecular profiles. Although tumors of the methylation class “spinal ependymoma” (SP-EPN) represent the most common intramedullary neoplasms in children and adults, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical meaning have been described in a large, epigenetically defined series. Methods: We mapped SP-EPN transcriptomes (n=76) to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. In addition, transcriptomic, epigenetic (n=234), genetic (n=140), and clinical analyses (n=115) were integrated for a detailed overview on this entity. Results: Integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord identified mature adult ependymal cells to display highest similarities to SP-EPN. Unsupervised hierarchical clustering of tumor data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype 1 predominantly contained NF2 wild type sequences with regular NF2 expression but revealed more extensive copy number alterations. Subtype 2 harbored previously known germline or sporadic NF2 mutations and was NF2-deficient in most cases, more often showed multilocular disease, and demonstrated a significantly reduced progression-free survival. Conclusion: Based on integrated molecular profiling of a large tumor series we identify two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.