Project description:We report a case of non-ventilator-associated nosocomial pneumonia and septicemia due to Dolosigranulum pigrum, a rare gram-positive opportunistic pathogen. The organism was isolated from bronchoalveolar lavage fluid and blood of a debilitated patient. D. pigrum was identified after 16S rRNA gene sequencing.
Project description:BackgroundDolosigranulum pigrum is a commensal inhabitant of the upper respiratory tract suspected to be responsible for ocular infections but no well-described case of D. pigrum corneal infection has been reported. Herein culture and PCR-sequencing-based investigations of corneal scraping specimens confirmed D. pigrum keratitis in three patients.Case presentationThree elderly patients presented with unilateral keratitis. None was a corneal-contact lens wearer, one had previous cataract surgery and another suffered rheumatoid arthritis sicca syndrome. Culturing the corneal scraping specimen was positive for two cases and PCR-sequencing of bacterial 16S rDNA in the presence of negative controls identified D. pigrum in three cases. The two D. pigrum isolates were in-vitro susceptible to penicillin G, amoxicillin, doxycycline, rifampicin and gentamicin. In all cases, surgical treatment of corneal thinning was necessary, but corneal perforation occurred in two cases despite intensive antimicrobial treatment with ticarcillin, gentamicin and vancomycin or levofloxacin eye drops leading to enucleation in one case.ConclusionsD. pigrum is the likely cause of corneal infection in three patients, with effective antibiotic treatment in two patients.
Project description:Multiple epidemiological studies identify Dolosigranulum pigrum as a candidate beneficial bacterium based on its positive association with health, including negative associations with nasal/nasopharyngeal colonization by the pathogenic species Staphylococcus aureus and Streptococcus pneumoniae Using a multipronged approach to gain new insights into D. pigrum function, we observed phenotypic interactions and predictions of genomic capacity that support the idea of a role for microbe-microbe interactions involving D. pigrum in shaping the composition of human nasal microbiota. We identified in vivo community-level and in vitro phenotypic cooperation by specific nasal Corynebacterium species. Also, D. pigrum inhibited S. aureus growth in vitro, whereas robust inhibition of S. pneumoniae required both D. pigrum and a nasal Corynebacterium together. D. pigrum l-lactic acid production was insufficient to account for these inhibitions. Genomic analysis of 11 strains revealed that D. pigrum has a small genome (average 1.86 Mb) and multiple predicted auxotrophies consistent with D. pigrum relying on its human host and on cocolonizing bacteria for key nutrients. Further, the accessory genome of D. pigrum harbored a diverse repertoire of biosynthetic gene clusters, some of which may have a role in microbe-microbe interactions. These new insights into D. pigrum's functions advance the field from compositional analysis to genomic and phenotypic experimentation on a potentially beneficial bacterial resident of the human upper respiratory tract and lay the foundation for future animal and clinical experiments.IMPORTANCEStaphylococcus aureus and Streptococcus pneumoniae infections cause significant morbidity and mortality in humans. For both, nasal colonization is a risk factor for infection. Studies of nasal microbiota identify Dolosigranulum pigrum as a benign bacterium present when adults are free of S. aureus or when children are free of S. pneumoniae Here, we validated these in vivo associations with functional assays. We found that D. pigrum inhibited S. aureusin vitro and, together with a specific nasal Corynebacterium species, also inhibited S. pneumoniae Furthermore, genomic analysis of D. pigrum indicated that it must obtain key nutrients from other nasal bacteria or from humans. These phenotypic interactions support the idea of a role for microbe-microbe interactions in shaping the composition of human nasal microbiota and implicate D. pigrum as a mutualist of humans. These findings support the feasibility of future development of microbe-targeted interventions to reshape nasal microbiota composition to exclude S. aureus and/or S. pneumoniae.
Project description:We report a case of acute cholecystitis accompanied by acute pancreatitis and caused by Dolosigranulum pigrum in a 76-year-old male with gallstones. D. pigrum was isolated from a blood culture and confirmed by biochemistry tests and 16S rRNA sequencing. The isolate was susceptible to the beta-lactams ampicillin, penicillin, cephalothin, ceftriaxone, ceftazidime, chloramphenicol, and vancomycin but was intermediate to erythromycin and clindamycin. The patient recovered without sequelae after treatment with appropriate antibiotics for two weeks.