Project description:Effect of FOXO knockdown on E2F1-mediated transcription U2OS cells stably expressing ER-E2F1 were infected with two different lentiviruses both targeting FOXO1 and FOXO3 or control virus encoding scrambled sequence. Twenty four hours post infection medium was replaced to serum-free DMEM for 24 hours. Then medium was replaced to serum-free DMEM with or without 20 nM 4-hydroxy tamoxifen for 6 hours.
Project description:Purpose: dose response analysis of E2F1 target genes expression in flow-sorted fractions with increasing amounts of fluorescently labled E2F1 Methods:U2OS pTRIPZ-YFP-ER-E2F1 cells were grown in full serum-containing growth medium and treated with 500 ng/ml doxycycline for 48 hours followed by addition of 90 nM OHT for an additional 20 hours. Cells from different YFP fractions were sorted by flow cytometry. mRNA profiles were generated by deep sequencing using Illumina HiSeq 4000. Results: different target genes have different E2F1 activation thresholds. Numerous proliferation-related target genes are induced already by the lowest E2F1-levels. Intermediate E2F1 levels induce cdk inhibitors, which might be responsible for cell cycle arrest. Finally, although some apoptotic E2F1 targets are induced already by low E2F1 levels, many key apoptotic genes require higher E2F1 levels for induction. Conclusions: induction of different cell fates by increasing E2F1 levels might pertain to differential affinities of the targets.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.