Project description:TET proteins convert 5-methylcytosine to 5-hydroxymethylcytosine, an emerging dynamic epigenetic state of DNA that can influence transcription. Evidence has linked TET1 function to epigenetic repression complexes, yet mechanistic information, especially for the TET2 and TET3 proteins, remains limited. Here, we show a direct interaction of TET2 and TET3 with O-GlcNAc transferase (OGT). OGT does not appear to influence hmC activity, rather TET2 and TET3 promote OGT activity. TET2/3-OGT co-localize on chromatin at active promoters enriched for H3K4me3 and reduction of either TET2/3 or OGT activity results in a direct decrease in H3K4me3 and concomitant decreased transcription. Further, we show that Host Cell Factor 1 (HCF1), a component of the H3K4 methyltransferase SET1/COMPASS complex, is a specific GlcNAcylation target of TET2/3-OGT, and modification of HCF1 is important for the integrity of SET1/COMPASS. Additionally, we find both TET proteins and OGT activity promote binding of the SET1/COMPASS H3K4 methyltransferase, SETD1A, to chromatin. Finally, studies in Tet2 knockout mouse bone marrow tissue extend and support the data as decreases are observed of global GlcNAcylation and also of H3K4me3, notably at several key regulators of haematopoiesis. Together, our results unveil a step-wise model, involving TET-OGT interactions, promotion of GlcNAcylation, and influence on H3K4me3 via SET1/COMPASS, highlighting a novel means by which TETs may induce transcriptional activation. ChIP-Seq experiments were performed on Illumina HiScanSQ sequencer in wild-type HEK293T cells for H3K4me3 histone marks, O-GlcNAc and HCF1, for HT-TET2, HT-TET3 and HT-OGT in HEK293T cells overexpressing those three fusion proteins and in TET2 Kd HEK293T cells for H3K4me3 histone marks. ChIP-Seqs were also performed in mouse bone marrow tissues for H3K4me3 histone marks, O-GlcNAc, endogenous Tet2 and in Tet2 Ko bone marrow tissues for H3K4me3 histone marks.
Project description:These data include the genome wide location analysis of Ogt by ChIP of Ogt in mouse ES cells. Precipitation of formaldehyde cross-linked chromatin prepared from mouse ES cell using specific antibody against OGT and IgG as control.
Project description:O-linked N-acetylglucosamine (O-GlcNAc ) transferase (OGT) activity is essential for embryonic stem (ES) cell viability and mouse development. OGT is present in both cytoplasm and nucleus of different cell types and mediates serine or threonine glycosylation. The Ogt gene locus resides on the X-chromosome and its activity is required for the viability of male ES cells. Using Ogt conditional knock out (KO) ES cells it was shown the failure of establishing stable KO ES clones further suggesting that Ogt activity is required for ES cell self-renewal and pluripotency. For understanding these changes, we performed global gene expression upon silencing of Ogt mediated by esiRNA in mouse Embryonic Stem Cells. Total RNA was extracted from E14 ES cells (derived from Ola129 mice) transiently transfected with Ogt specific and control esiRNA oligos 48 hrs. post-transfection.
Project description:The O-GlcNAc transferase OGT interacts robustly with all three mammalian TET methylcytosine dioxygenases. We show here that deletion of the Ogt gene in mouse embryonic stem cells (mESC) results in a widespread increase in the TET product 5-hydroxymethylcytosine (5hmC) in both euchromatic and heterochromatic compartments, with concomitant reduction of the TET substrate 5-methylcytosine (5mC) at the same genomic regions. mESC treated with an OGT inhibitor displayed increased 5hmC, and attenuating the TET1-OGT interaction in mESC resulted in a genome-wide decrease of 5mC, indicating that OGT restrains TET activity and limits untoward DNA demethylation in a manner that requires the TET-OGT interaction and the catalytic activity of OGT. DNA hypomethylation in OGT-deficient cells was accompanied by de-repression of transposable elements (TEs) predominantly located in heterochromatin. We suggest that OGT protects the genome against TET-mediated DNA demethylation and loss of heterochromatin integrity, preventing the aberrant increase in TE expression noted in cancer, autoimmune-inflammatory diseases, cellular senescence and ageing.
Project description:TET proteins convert 5-methylcytosine to 5-hydroxymethylcytosine, an emerging dynamic epigenetic state of DNA that can influence transcription. Evidence has linked TET1 function to epigenetic repression complexes, yet mechanistic information, especially for the TET2 and TET3 proteins, remains limited. Here, we show a direct interaction of TET2 and TET3 with O-GlcNAc transferase (OGT). OGT does not appear to influence hmC activity, rather TET2 and TET3 promote OGT activity. TET2/3-OGT co-localize on chromatin at active promoters enriched for H3K4me3 and reduction of either TET2/3 or OGT activity results in a direct decrease in H3K4me3 and concomitant decreased transcription. Further, we show that Host Cell Factor 1 (HCF1), a component of the H3K4 methyltransferase SET1/COMPASS complex, is a specific GlcNAcylation target of TET2/3-OGT, and modification of HCF1 is important for the integrity of SET1/COMPASS. Additionally, we find both TET proteins and OGT activity promote binding of the SET1/COMPASS H3K4 methyltransferase, SETD1A, to chromatin. Finally, studies in Tet2 knockout mouse bone marrow tissue extend and support the data as decreases are observed of global GlcNAcylation and also of H3K4me3, notably at several key regulators of haematopoiesis. Together, our results unveil a step-wise model, involving TET-OGT interactions, promotion of GlcNAcylation, and influence on H3K4me3 via SET1/COMPASS, highlighting a novel means by which TETs may induce transcriptional activation.
Project description:O-linked N-acetylglucosamine (O-GlcNAc ) transferase (OGT) activity is essential for embryonic stem (ES) cell viability and mouse development. OGT is present in both cytoplasm and nucleus of different cell types and mediates serine or threonine glycosylation. The Ogt gene locus resides on the X-chromosome and its activity is required for the viability of male ES cells. Using Ogt conditional knock out (KO) ES cells it was shown the failure of establishing stable KO ES clones further suggesting that Ogt activity is required for ES cell self-renewal and pluripotency. For understanding these changes, we performed global gene expression upon silencing of Ogt mediated by esiRNA in mouse Embryonic Stem Cells.
Project description:Epigenetic modification of the mammalian genome by DNA methylation (5-methylcytosine) has a profound impact on chromatin structure, gene expression and maintenance of cellular identity. Recent demonstration that members of the Ten-eleven translocation (Tet) family proteins can convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) raised the possibility that Tet proteins are capable of establishing a distinct epigenetic state. We have recently demonstrated that Tet1 is specifically expressed in murine embryonic stem (ES) cells and is required for ES cell self-renewal and maintenance. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq), here we show that Tet1 is preferentially bound to CpG-rich sequences at promoters of both transcriptionally active and Polycomb-repressed genes. Despite a general increase in levels of DNA methylation at Tet1 binding-sites, Tet1 depletion does not lead to down-regulation of all the Tet1 targets. Interestingly, while Tet1-mediated promoter hypomethylation is required for maintaining the expression of a group of transcriptionally active genes, it is also required for repression of Polycomb-targeted developmental regulators. Tet1 contributes to silencing of this group of genes by facilitating recruitment of PRC2 to CpG-rich gene promoters. Thus, our study not only establishes a role for Tet1 in modulating DNA methylation levels at CpG-rich promoters, but also reveals a dual function of Tet1 in promoting transcription of pluripotency factors as well as participating in the repression of Polycomb-targeted developmental regulators. To determine the genome-wide distribution of Tet1 in mouse ES cells, we have performed ChIP-seq experiments using Tet1 antibodies in control knockdown (KD) and Tet1 KD ES cells.