Project description:Iron (Fe) is an essential plant micronutrient, and its deficiency limits plant growth and development on alkaline soils. Under Fe deficiency, plant responses include upregulation of genes involved in Fe uptake from the soil. However, little is known about shoot responses to Fe deficiency. Using microarrays to probe gene expression in Kas-1 and Tsu-1 ecotypes of Arabidopsis thaliana revealed conserved rosette gene expression responses to Fe deficiency. Fe regulated genes included known metal homeostasis-related genes, and a number of genes of unknown function. Kas and Tsu Arabidopsis seedlings were grown on complete media for 24 d, and then put on complete or -Fe media and collected after 24 and 48 h.
Project description:Iron (Fe) is an essential plant micronutrient, and its deficiency limits plant growth and development on alkaline soils. Under Fe deficiency, plant responses include upregulation of genes involved in Fe uptake from the soil. However, little is known about shoot responses to Fe deficiency. Using microarrays to probe gene expression in Kas-1 and Tsu-1 ecotypes of Arabidopsis thaliana revealed conserved rosette gene expression responses to Fe deficiency. Fe regulated genes included known metal homeostasis-related genes, and a number of genes of unknown function.
Project description:Fe deficiency stimulates a coordinated response involving reduction, transport and redistribution of Fe in the roots. The expression of genes regulated by Fe deficiency in the two contrasting Arabidopsis thaliana ecotypes, Tsu-1 and Kas-1, shows that different ecotypes can respond in diverse ways, with different Fe regulated overrepresented categories. We use microarrays to analyze the Fe deficiency responses of contrasting Arabidopsis thaliana ecotypes (Tsu-1 and Kas-1).
Project description:Fe deficiency stimulates a coordinated response involving reduction, transport and redistribution of Fe in the roots. The expression of genes regulated by Fe deficiency in the two contrasting Arabidopsis thaliana ecotypes, Tsu-1 and Kas-1, shows that different ecotypes can respond in diverse ways, with different Fe regulated overrepresented categories. We use microarrays to analyze the Fe deficiency responses of contrasting Arabidopsis thaliana ecotypes (Tsu-1 and Kas-1). Arabidopsis thaliana roots from the Kas-1 and Tsu-1 ecotypes were exposed to complete or -Fe nutrient solutions and collected after 24 and 48 h for RNA extraction and hybridization on Affymetrix microarrays. Experiments were done using three biological replicates.
Project description:Purpose: plants exposed to multiple simultaneous adverse growth conditions trigger molecular responses that differ from the sum of those to individual stressors. Copper and iron are fundamental elements required for proper photosynthesis, energy production, DNA metabolism and hormone sensing, among all. Therefore, copper and iron deprivation limits plant yield. In natural environments, simultaneous deficiency to copper and iron can occur. As part of a multiple high-throughput study to identify combinatorial responses to both copper and iron deficiency, proteomic profiling of Arabidopsis thaliana rosette leaves exposed to copper and/or iron deficiencies have been conducted.
Project description:These data provide a basis for the detection of sequence based polymorphisms between the Col-1, Tsu-1, and Kas-1 accessions of Arabidopsis thaliana. The experimental data provides an initial characterization of differences among the accessions, as well as a means for improving gene expression studies with the filtering of SFP from arrays studies. Recent studies have documented remarkable genetic variation among Arabidopsis thaliana accessions collected from diverse habitats and across its geographical range. Of particular interest are accessions with putatively locally adapted phenotypes – i.e., accessions with attributes that are likely adaptive under the climatic or habitat conditions of their sites of origin. These genotypes are especially valuable as they may provide insight into the genetic basis of adaptive evolution as well as allow the discovery of genes of ecological importance. Therefore we studied the physiology, genome content and gene expression of two physiologically extreme accessions (Tsu-1 from a wet environment in Tsushima, Japan and Kas-1 from a dry environment in Kashmir, India). The gene expression studies were conducted under two levels of soil moisture and accompanied by physiological measurements to characterize early responses to soil moisture deficit. Genomic hybridization experiments identified 42,503 single feature polymorphisms (SFP) between accessions, providing an initial screen for putative SNPs, indels, or changes in gene content.
Project description:These data provide a basis for exploration of gene expression differences between physiologically extreme accessions of Arabidopsis thaliana. Recent studies have documented remarkable genetic variation among Arabidopsis thaliana accessions collected from diverse habitats and across its geographical range. Of particular interest are accessions with putatively locally adapted phenotypes â i.e., accessions with attributes that are likely adaptive under the climatic or habitat conditions of their sites of origin. These genotypes are especially valuable as they may provide insight into the genetic basis of adaptive evolution as well as allow the discovery of genes of ecological importance. Therefore we studied the physiology, genome content and gene expression of two physiologically extreme accessions (Tsu-1 from a wet environment in Tsushima, Japan and Kas-1 from a dry environment in Kashmir, India). The gene expression studies were conducted under two levels of soil moisture and accompanied by physiological measurements to characterize early responses to soil moisture deficit. Genomic hybridization experiments identified 42,503 single feature polymorphisms (SFP) between accessions, providing an initial screen for putative SNPs, indels, or changes in gene content. Microarray transcript profiling of leaf RNA identified a large number (5,996) of genes exhibiting robust constitutive differences in expression including many genes involved in general growth and development as well as abiotic stress pathways. Interestingly, mild soil drying resulted in only subtle physiological responses but resulted in gene expression changes in hundreds of transcripts, including 352 genes exhibiting differential responses between accessions. Our results highlight the value of genomic studies of natural accessions as well as identify a number of candidate genes for the observed constitutive and induced physiological differences between Tsu-1 and Kas-1. The basic experimental design involves two accessions (Tsu-1 and Kas-1) crossed with two environmental levels (well-watered soil and mild soil drying) and 3 biological replicates per accession/treatment combination (2 x 2 x 6 =24 arrays total)
Project description:These data provide a basis for exploration of gene expression differences between physiologically extreme accessions of Arabidopsis thaliana. Recent studies have documented remarkable genetic variation among Arabidopsis thaliana accessions collected from diverse habitats and across its geographical range. Of particular interest are accessions with putatively locally adapted phenotypes – i.e., accessions with attributes that are likely adaptive under the climatic or habitat conditions of their sites of origin. These genotypes are especially valuable as they may provide insight into the genetic basis of adaptive evolution as well as allow the discovery of genes of ecological importance. Therefore we studied the physiology, genome content and gene expression of two physiologically extreme accessions (Tsu-1 from a wet environment in Tsushima, Japan and Kas-1 from a dry environment in Kashmir, India). The gene expression studies were conducted under two levels of soil moisture and accompanied by physiological measurements to characterize early responses to soil moisture deficit. Genomic hybridization experiments identified 42,503 single feature polymorphisms (SFP) between accessions, providing an initial screen for putative SNPs, indels, or changes in gene content. Microarray transcript profiling of leaf RNA identified a large number (5,996) of genes exhibiting robust constitutive differences in expression including many genes involved in general growth and development as well as abiotic stress pathways. Interestingly, mild soil drying resulted in only subtle physiological responses but resulted in gene expression changes in hundreds of transcripts, including 352 genes exhibiting differential responses between accessions. Our results highlight the value of genomic studies of natural accessions as well as identify a number of candidate genes for the observed constitutive and induced physiological differences between Tsu-1 and Kas-1.
Project description:These data provide a basis for the detection of sequence based polymorphisms between the Col-1, Tsu-1, and Kas-1 accessions of Arabidopsis thaliana. The experimental data provides an initial characterization of differences among the accessions, as well as a means for improving gene expression studies with the filtering of SFP from arrays studies. Recent studies have documented remarkable genetic variation among Arabidopsis thaliana accessions collected from diverse habitats and across its geographical range. Of particular interest are accessions with putatively locally adapted phenotypes â i.e., accessions with attributes that are likely adaptive under the climatic or habitat conditions of their sites of origin. These genotypes are especially valuable as they may provide insight into the genetic basis of adaptive evolution as well as allow the discovery of genes of ecological importance. Therefore we studied the physiology, genome content and gene expression of two physiologically extreme accessions (Tsu-1 from a wet environment in Tsushima, Japan and Kas-1 from a dry environment in Kashmir, India). The gene expression studies were conducted under two levels of soil moisture and accompanied by physiological measurements to characterize early responses to soil moisture deficit. Genomic hybridization experiments identified 42,503 single feature polymorphisms (SFP) between accessions, providing an initial screen for putative SNPs, indels, or changes in gene content. Each accession has 6 replicates, single channel on the ATH1 array. Samples were processed in two balanced batches (bioprime random labeling, hybridization,scanning). A total of 18 arrays
Project description:Purpose: plants exposed to multiple simultaneous adverse growth conditions trigger molecular responses that differ from the sum of those to individual stressors. Copper and iron are fundamental elements required for proper photosynthesis, energy production, DNA metabolism and hormone sensing, among all. Therefore, copper and iron deprivation limits plant yield. In natural environments, simultaneous deficiency to copper and iron can occur. As part of a multiple high-throughput study to identify combinatorial responses to both copper and iron deficiency, RNA-Seq profiling of Arabidopsis thaliana rosette leaves exposed to copper and/or iron deficiencies have been conducted. Methods: RNA-Seq libraries were prepared from total RNA of whole rosettes of 20-d-old plants treated for control conditions, copper deficiency, iron deficiency or simultaneous deficiency to both copper and iron for 10 d and sequenced using Illumina protocols. 2 independent plants were RNA-Seq-sequenced per treatment. Adaptor sequences were removed with Trimmomatic and the resulting reads mapped to the Arabidopsis genome (Araport11) with Tophat 2.1.1. Read counts and differential expression analysis were conducted with Cufflinks/Cuffdiff. Results: for RNA-Seq analysis a Tophat/Cuffdiff pipeline was designed. Each sample provided app. 9 million reads. After applying a cut-off of absolute log2(FC) ≥ 1 to controls and a FDR ≤ 0.05, copper deficiency led to 83 differentially expressed genes, followed by 1708 during iron deficiency, while the combinatorial treatment altered 2056 transcripts. Comparison of differential expressed genes among treatments indicated that double deficiency led to app. 45% rewiring of all detected transcriptional changes. Conclusions: our data support that combinatorial copper and iron deficiency treatments in plants triggers transcriptional responses that differ from those to single deficiencies.