Project description:Oncogenic mutations in BRAF and NRAS occur in 70% of melanomas. Here we identify a microRNA, miR-146a, that is highly upregulated by oncogenic BRAF and NRAS. Expression of miR-146a increases the ability of human melanoma cells to proliferate in culture and form tumors in mice, whereas knockdown of miR-146a has the opposite effects. We show these oncogenic activities are due to miR-146a targeting the NUMB mRNA, a repressor of Notch signaling. Previous studies have shown that pre-miR-146a contains a single nucleotide polymorphism (C>G rs2910164). We find that the ability of pre-miR-146a/G to activate Notch signaling and promote oncogenesis is substantially higher than that of pre-miR-146a/C. Analysis of melanoma cell lines and matched patient samples indicates that during melanoma progression pre-miR-146a/G is enriched relative to pre-miR-146a/C, resulting from a C-to-G somatic mutation in pre-miR-146a/C. Collectively, our results reveal a central role for miR-146a in the initiation and progression of melanoma. SKMEL28 melanoma cell line stably expressing either an empty vector or pre-miR146a with either C or G SNP (SKMEL28-FG12, SKMEL28-miR-146a/C and SKMEL28-miR-146a/G) were used to prepare total RNA. Microarray analysis was performed by using biological replicates for each stable cell lines for a total of 6 samples.
Project description:Oncogenic mutations in BRAF and NRAS occur in 70% of melanomas. Here we identify a microRNA, miR-146a, that is highly upregulated by oncogenic BRAF and NRAS. Expression of miR-146a increases the ability of human melanoma cells to proliferate in culture and form tumors in mice, whereas knockdown of miR-146a has the opposite effects. We show these oncogenic activities are due to miR-146a targeting the NUMB mRNA, a repressor of Notch signaling. Previous studies have shown that pre-miR-146a contains a single nucleotide polymorphism (C>G rs2910164). We find that the ability of pre-miR-146a/G to activate Notch signaling and promote oncogenesis is substantially higher than that of pre-miR-146a/C. Analysis of melanoma cell lines and matched patient samples indicates that during melanoma progression pre-miR-146a/G is enriched relative to pre-miR-146a/C, resulting from a C-to-G somatic mutation in pre-miR-146a/C. Collectively, our results reveal a central role for miR-146a in the initiation and progression of melanoma.
Project description:Oncogenic mutations in BRAF and NRAS occur in 70% of melanomas. Here we identify a microRNA, miR-146a, that is highly upregulated by oncogenic BRAF and NRAS. Expression of miR-146a increases the ability of human melanoma cells to proliferate in culture and form tumors in mice, whereas knockdown of miR-146a has the opposite effects. We show these oncogenic activities are due to miR-146a targeting the NUMB mRNA, a repressor of Notch signaling. Previous studies have shown that pre-miR-146a contains a single nucleotide polymorphism (C>G rs2910164). We find that the ability of pre-miR-146a/G to activate Notch signaling and promote oncogenesis is substantially higher than that of pre-miR-146a/C. Analysis of melanoma cell lines and matched patient samples indicates that during melanoma progression pre-miR-146a/G is enriched relative to pre-miR-146a/C, resulting from a C-to-G somatic mutation in pre-miR-146a/C. Collectively, our results reveal a central role for miR-146a in the initiation and progression of melanoma.
Project description:Oncogenic mutations in BRAF and NRAS occur in 70% of melanomas. Here we identify a microRNA, miR-146a, that is highly upregulated by oncogenic BRAF and NRAS. Expression of miR-146a increases the ability of human melanoma cells to proliferate in culture and form tumors in mice, whereas knockdown of miR-146a has the opposite effects. We show these oncogenic activities are due to miR-146a targeting the NUMB mRNA, a repressor of Notch signaling. Previous studies have shown that pre-miR-146a contains a single nucleotide polymorphism (C>G rs2910164). We find that the ability of pre-miR-146a/G to activate Notch signaling and promote oncogenesis is substantially higher than that of pre-miR-146a/C. Analysis of melanoma cell lines and matched patient samples indicates that during melanoma progression pre-miR-146a/G is enriched relative to pre-miR-146a/C, resulting from a C-to-G somatic mutation in pre-miR-146a/C. Collectively, our results reveal a central role for miR-146a in the initiation and progression of melanoma. WI-38 cells were either infected with BRAFV600E or Empty retroviral vectors and small RNA were prepared from these cells. As an additional control, WI-38 cells were serum starved and used to generate quiscent cells, which were also used to prepase small RNA. The small RNA were then used to generate small RNA library and were used on Illumina genome analyzer.
Project description:Malignant melanoma is the most aggressive form of skin cancer therefore it is crucial to disclose its underlying molecular mechanisms. MicroRNAs are small endogenous non-coding RNAs able to post-transcriptionally down-regulate the expression of direct target genes. Using a melanoma progression model, we identified miR-146a as a key double-acting player in melanoma malignancy. In fact, miR-146a is able to enhance tumor growth while it suppresses dissemination. We evidenced that melanoma cell growth is coordinated by its direct target lunatic fringe (LFNG) which operates on the NOTCH/PTEN/Akt pathway. Instead, metastasis formation inhibition is linked to decreased expression of ITGAV and ROCK1. Relevantly, miR-146a expression correlates with melanoma recurrence and it is enriched both in patients-derived melanoma and cutaneous metastasis samples, while its direct targets are depleted. However, miR-146a levels drop in Circulating Tumor Cells, suggesting the necessity for miR-146a expression to fluctuate during tumor progression in order to favor tumor growth and allow dissemination. This study reconciles the contradictory biological functions of miR-146a in melanoma progression and unravels distinct molecular mechanisms that need to be considered for therapeutic interventions.
Project description:The most critical stage in initiation of melanoma metastasis is the radial to vertical growth transition, yet the triggers of this transition remain elusive. We introduce a novel perspective, suggesting that the microenvironment drives melanoma metastasis independently of mutation acquisition. Here we examined the changes in microenvironment that occur during melanoma radial growth. We show that direct contact of melanoma cells with the remote epidermal layer triggers vertical invasion via Notch signaling activation, the latter serving to inhibit MITF function. Briefly, within the native Notch ligand-free microenvironment, MITF, the melanocyte lineage master regulator, binds and represses miR-222/221 promoter in an RBPJK-dependent manner. However, when radial growth brings melanoma cells into contact with distal differentiated keratinocytes that express Notch ligands, the activated Notch intracellular domain impairs MITF binding to miR-222/221 promoter. This de-repression of miR-222/221 expression triggers initiation of invasion. Our findings may direct novel prevention opportunities via targeting specific microenvironment. Two replicates of Notch-activated cells that were seeded on Delta-like-1 (DLL1) (2 ng/µl ) coated plates were compared to two replicates of cells without Notch activation. The goal of this experiment is to evaluate the changes of miRs expression in melanoma cells upon Notch signaling activation.
Project description:The Notch signaling pathway regulates fate decision, proliferation and differentiation of intestinal epithelial cells. However, the role of Notch signaling in colorectal cancer progression is largely unknown. Here we show that Notch signaling suppresses the progression of colorectal tumorigenesis, even though it augments tumor initiation. In contrast to adenomas of Apcmin mice, Notch-inactivated Apcmin adenomas showed more malignant characteristics, such as submucosal invasion and loss of glandular pattern. Conversely, Notch-activated Apcmin adenomas showed a reversion from high-grade to low-grade features, such as the restoration of adherent junctions. Expression profiling revealed that Notch signaling promotes the differentiation of tumor cells with down regulation of Wnt/beta-catenin target genes and inhibition of epithelial-mesenchymal transition. Comparison of mouse and human expression profiles also suggests the common role of Notch in inhibition of tumor progression. Interestingly, Notch signaling suppressed the expression of beta-catenin responsive genes through chromatin modification of Tcf4/beta-catenin binding sides. Our results suggest that Notch signaling has dual roles in colorectal tumorigenesis: promoting adenoma initiation, while inhibiting tumor progression to colorectal cancer. mRNAs from normal (WT, Notch-activated and Notch-inactivated) and tumor (WT, Notch-activated and Notch-inactivated) tissues were profiled.
Project description:The most critical stage in initiation of melanoma metastasis is the radial to vertical growth transition, yet the triggers of this transition remain elusive. We introduce a novel perspective, suggesting that the microenvironment drives melanoma metastasis independently of mutation acquisition. Here we examined the changes in microenvironment that occur during melanoma radial growth. We show that direct contact of melanoma cells with the remote epidermal layer triggers vertical invasion via Notch signaling activation, the latter serving to inhibit MITF function. Briefly, within the native Notch ligand-free microenvironment, MITF, the melanocyte lineage master regulator, binds and represses miR-222/221 promoter in an RBPJK-dependent manner. However, when radial growth brings melanoma cells into contact with distal differentiated keratinocytes that express Notch ligands, the activated Notch intracellular domain impairs MITF binding to miR-222/221 promoter. This de-repression of miR-222/221 expression triggers initiation of invasion. Our findings may direct novel prevention opportunities via targeting specific microenvironment.
Project description:The Notch signaling pathway regulates fate decision, proliferation and differentiation of intestinal epithelial cells. However, the role of Notch signaling in colorectal cancer progression is largely unknown. Here we show that Notch signaling suppresses the progression of colorectal tumorigenesis, even though it augments tumor initiation. In contrast to adenomas of Apcmin mice, Notch-inactivated Apcmin adenomas showed more malignant characteristics, such as submucosal invasion and loss of glandular pattern. Conversely, Notch-activated Apcmin adenomas showed a reversion from high-grade to low-grade features, such as the restoration of adherent junctions. Expression profiling revealed that Notch signaling promotes the differentiation of tumor cells with down regulation of Wnt/beta-catenin target genes and inhibition of epithelial-mesenchymal transition. Comparison of mouse and human expression profiles also suggests the common role of Notch in inhibition of tumor progression. Interestingly, Notch signaling suppressed the expression of beta-catenin responsive genes through chromatin modification of Tcf4/beta-catenin binding sides. Our results suggest that Notch signaling has dual roles in colorectal tumorigenesis: promoting adenoma initiation, while inhibiting tumor progression to colorectal cancer.