Project description:Large scale analysis of balanced chromosomal translocation breakpoints has shown nonhomologous end joining and microhomology-mediated repair to be the main drivers of interchromosomal structural aberrations. Breakpoint sequences of de novo unbalanced translocations have not yet been investigated systematically. We analyzed 12 de novo translocations and mapped the breakpoints in 9. Surprisingly, in contrast to balanced translocations, we identify non-allelic homologous recombination (NAHR) between (retro)transposable elements and especially long interspersed elements (LINEs) as the main mutational mechanism. This finding implicates (retro)transposons to be a major driver of genomic rearrangements and exposes a profoundly different mutational mechanism compared to balanced chromosomal translocations. Furthermore, we show the existence of compound maternal/paternal derivative chromosomes, reinforcing the hypothesis that human cleavage stage embryogenesis is a cradle of chromosomal rearrangements. In total 36 non-amplified genomic DNA samples (12 patients plus parents) extracted from blood or amniocytes were analyzed by 250K Nsp I SNP arrays (GEO accession number GPL3718).
Project description:Large scale analysis of balanced chromosomal translocation breakpoints has shown nonhomologous end joining and microhomology-mediated repair to be the main drivers of interchromosomal structural aberrations. Breakpoint sequences of de novo unbalanced translocations have not yet been investigated systematically. We analyzed 12 de novo translocations and mapped the breakpoints in 9. Surprisingly, in contrast to balanced translocations, we identify non-allelic homologous recombination (NAHR) between (retro)transposable elements and especially long interspersed elements (LINEs) as the main mutational mechanism. This finding implicates (retro)transposons to be a major driver of genomic rearrangements and exposes a profoundly different mutational mechanism compared to balanced chromosomal translocations. Furthermore, we show the existence of compound maternal/paternal derivative chromosomes, reinforcing the hypothesis that human cleavage stage embryogenesis is a cradle of chromosomal rearrangements.
Project description:Unbalanced translocations are a relatively common type of copy number variation and are a major contributor to neurodevelopmental disorders. We analyzed the breakpoints of 57 unique unbalanced translocations to investigate the mechanisms of how they form. 51 are simple unbalanced translocations between two different chromosome ends, and six rearrangements have more than three breakpoints involving two to five chromosomes. Sequencing 37 breakpoint junctions revealed that simple translocations have between zero and four basepairs (bp) of microhomology (n=26), short inserted sequences (n=8), or paralogous repeats (n=3) at the junctions, indicating that translocations do not arise primarily from non-allelic homologous recombination, but instead form most often via non-homologous end joining or microhomology-mediated break-induced replication. Three simple translocations fuse genes that are predicted to produce in-frame transcripts of SIRPG-WWOX, SMOC2-PROX1, and PIEZO2-MTA1, which may lead to gain of function. Three complex translocations have inversions, insertions, and multiple breakpoint junctions between only two chromosomes. Whole- genome sequencing and fluorescence in situ hybridization analysis of two de novo translocations revealed at least 18 and 33 breakpoints involving five different chromosomes. Breakpoint sequencing of one inherited translocation involving four chromosomes uncovered multiple breakpoints with inversions and insertions. All of these breakpoint junctions had zero to four bp of microhomology consistent with germline chromothripsis, and both de novo events occurred on paternal alleles. Breakpoint sequencing of our large collection of chromosome rearrangements offers a comprehensive analysis of the molecular mechanisms behind germline translocation formation. High resolution array CGH; two-color experiment, clinical patient vs. normal control gDNA; sex mis-matched
Project description:Unbalanced translocations are a relatively common type of copy number variation and are a major contributor to neurodevelopmental disorders. We analyzed the breakpoints of 57 unique unbalanced translocations to investigate the mechanisms of how they form. 51 are simple unbalanced translocations between two different chromosome ends, and six rearrangements have more than three breakpoints involving two to five chromosomes. Sequencing 37 breakpoint junctions revealed that simple translocations have between zero and four basepairs (bp) of microhomology (n=26), short inserted sequences (n=8), or paralogous repeats (n=3) at the junctions, indicating that translocations do not arise primarily from non-allelic homologous recombination, but instead form most often via non-homologous end joining or microhomology-mediated break-induced replication. Three simple translocations fuse genes that are predicted to produce in-frame transcripts of SIRPG-WWOX, SMOC2-PROX1, and PIEZO2-MTA1, which may lead to gain of function. Three complex translocations have inversions, insertions, and multiple breakpoint junctions between only two chromosomes. Whole- genome sequencing and fluorescence in situ hybridization analysis of two de novo translocations revealed at least 18 and 33 breakpoints involving five different chromosomes. Breakpoint sequencing of one inherited translocation involving four chromosomes uncovered multiple breakpoints with inversions and insertions. All of these breakpoint junctions had zero to four bp of microhomology consistent with germline chromothripsis, and both de novo events occurred on paternal alleles. Breakpoint sequencing of our large collection of chromosome rearrangements offers a comprehensive analysis of the molecular mechanisms behind germline translocation formation.
Project description:Triple negative breast cancers (TNBCs) are characterised by a wide spectrum of genomic aberrations representing underlying repair defects that may be targeted therapeutically. However, means to measure these defects in tumours and an understanding of their effect on sensitivity to DNA damaging agents is limited. We sought to address this by establishing methods to trace underlying deficiencies in DNA repair processes using patterns of genomic instability. Here, we demonstrate that a pattern related to Homologous Recombination defects, allelic-imbalanced Copy Number Aberration, predicts response to platinum containing chemotherapeutics in TNBC patients. These patterns also enabled us to identify a meiotic gene HORMAD1, as a functional driver of allelic-imbalanced Copy Number Aberration and genomic instability in TNBC. Additionally, HORMAD1 expression is also a predictive marker of carboplatin response in TNBC. Mechanistically, expression of HORMAD1 in cell lines inhibited Homologous Recombination representing outÐof-context activation of its meiotic function.
Project description:HS-10502 is a Poly(ADP-ribose) polymerase 1 (PARP1)-specific selective inhibitor. The purpose if this study is to assess the safety, tolerability, pharmacokinetics (PK), and efficacy of HS-10502 in subjects with homologous recombination repair (HRR) gene mutant or homologous recombination deficiency (HRD) positive advanced solid tumors.
Project description:At the organismal level, genome rearrangements are usually deleterious and are often associated with disease. Yet, on an evolutionary scale, they can be beneficial as they provide for rapid genetic diversification. DNA lesions, particularly double-strand breaks (DSBs), are sources of genome instability that can be rectified by various repair processes. Homologous recombination (HR) is highly effective at protecting the genome from DSBs and provides for accurate repair between sister chromatids and homologous chromosomes. Here we show that although random DSBs induced by ionizing radiation in yeast chromosomes are repaired efficiently by HR in G-2 diploid cells, rearrangements are frequent. The chromosome aberrations (ABs) primarily resulted from recombination between Ty retrotransposable elements, the most abundant class of dispersed repetitive DNAs in the genome, while some rearrangements involved other classes of repetitive DNA. Few, if any, of the ABs could be attributed to nonhomologous end-joining (NHEJ). We conclude that only those few DSBs that fall at or near the 3-5% of the genome composed of repetitive DNA elements are effective at generating rearrangements, while other lesions that appear in unique (single copy) sequences are correctly repaired. Thus, by successfully competing with repair that normally occurs between large homologous chromosomal DNAs, the combination of repetitive elements and DSBs provides genome plasticity and a rich source of evolutionary opportunities. Keywords: CGH-array Diploid G-2 yeast cells were exposed to 80 krad of ionizing radiation and plated on rich media to obtain survivor colonies. Genomic DNA from each of 37 survivors (Cy5/red; JW1 to JW13, and A1 to A24) was competitively hybridized to DNA from the parent diploid strain (Cy3/green). Gains of genomic segments in the survivors were detected as continuous regions of positive Log2 Red:Green ratios, while losses were detected as negative Log2 Red:Green ratios.
Project description:At the organismal level, genome rearrangements are usually deleterious and are often associated with disease. Yet, on an evolutionary scale, they can be beneficial as they provide for rapid genetic diversification. DNA lesions, particularly double-strand breaks (DSBs), are sources of genome instability that can be rectified by various repair processes. Homologous recombination (HR) is highly effective at protecting the genome from DSBs and provides for accurate repair between sister chromatids and homologous chromosomes. Here we show that although random DSBs induced by ionizing radiation in yeast chromosomes are repaired efficiently by HR in G-2 diploid cells, rearrangements are frequent. The chromosome aberrations (ABs) primarily resulted from recombination between Ty retrotransposable elements, the most abundant class of dispersed repetitive DNAs in the genome, while some rearrangements involved other classes of repetitive DNA. Few, if any, of the ABs could be attributed to nonhomologous end-joining (NHEJ). We conclude that only those few DSBs that fall at or near the 3-5% of the genome composed of repetitive DNA elements are effective at generating rearrangements, while other lesions that appear in unique (single copy) sequences are correctly repaired. Thus, by successfully competing with repair that normally occurs between large homologous chromosomal DNAs, the combination of repetitive elements and DSBs provides genome plasticity and a rich source of evolutionary opportunities. Keywords: Band-array Each array in this series corresponds to the DNA of a yeast chromosomal band excised from a pulse-field gel (CHEF). Chromosomal aberrations identified in radiation survivors were analyzed by microarray to reveal which regions of the genome were present in the new chromosomes. The DNA enriched in the specific band appears in the arrays as continuos segments of spots with highly positive Log2 Red/Green ratios.
Project description:At the organismal level, genome rearrangements are usually deleterious and are often associated with disease. Yet, on an evolutionary scale, they can be beneficial as they provide for rapid genetic diversification. DNA lesions, particularly double-strand breaks (DSBs), are sources of genome instability that can be rectified by various repair processes. Homologous recombination (HR) is highly effective at protecting the genome from DSBs and provides for accurate repair between sister chromatids and homologous chromosomes. Here we show that although random DSBs induced by ionizing radiation in yeast chromosomes are repaired efficiently by HR in G-2 diploid cells, rearrangements are frequent. The chromosome aberrations (ABs) primarily resulted from recombination between Ty retrotransposable elements, the most abundant class of dispersed repetitive DNAs in the genome, while some rearrangements involved other classes of repetitive DNA. Few, if any, of the ABs could be attributed to nonhomologous end-joining (NHEJ). We conclude that only those few DSBs that fall at or near the 3-5% of the genome composed of repetitive DNA elements are effective at generating rearrangements, while other lesions that appear in unique (single copy) sequences are correctly repaired. Thus, by successfully competing with repair that normally occurs between large homologous chromosomal DNAs, the combination of repetitive elements and DSBs provides genome plasticity and a rich source of evolutionary opportunities. Keywords: Band-array