Project description:The aim of this study was to analyze the impact of autotetraploidy on gene expression in Arabidopsis thaliana by comparing diploid versus tetraploid transcriptomes. In particular, this included the comparison of the transcriptome of different tetraploid A. thaliana ecotypes (Col-0 vs. Ler-0). The study was extended to address further aspects. One was the comparison of the transcriptomes in subsequent generations. This intended to obtain information on the genome wide stability of autotetraploid gene expression. Another line of work compared the transcriptomes of different diploid vs. tetraploid tissues. This aimed to investigate whether particular gene groups are specifically affected during the development of A. thaliana autotetraploids. Samples 1-8: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 9-12: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 13-24: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 25-32: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 33-36: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Ler-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 37-40: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Col-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 41-44: Arabidopsis thaliana Col-0/Ler-0 diploid transcriptome. Transcriptional profiling and comparison of diploid Col-0 vs. diploid Ler-0 seedlings. The experiment was carried out with pedigree of esrablished lines. Samples 45-48: Arabidopsis thaliana Col-0/Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid Col-0 vs tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 and Ler-0 lines.
Project description:Transcriptional profiling of Arabidopsis thaliana cotyledons comparing ecotype Col-0 (Control) with lea13 T-DNA line to elucidate the response mechanism to drought stress conditions that rely on LEA protein function.
Project description:Purpose: In this study we investigated the role of JASMONATE RESISTANT 1 (JAR1) and JAR1 mediated JA-Ile formation in drought stress tolerance in Arabidopsis thaliana. Methods: Global transcriptional changes in a newly generated over-expression line (JAR1-OE; 35S::JAR1-1-YFP)), a T-DNA insertion line in the JAR1 locus (jar1-11;SALK_034543), and wild-type Col-0 were investigated by RNA-seq analyses of rosette leaves from 32 day-old plant that were either well-watered (control) or not watered after day 18 (drought). Plants were grown on soil under long-day conditions Results: Under control conditions, using a stringent cut-off (DESeq, adjusted to FDR < 0.01 and LogFC ≥ 1), we found only four differentially expressed genes (DEGs) between jar1-11 and Col-0, all of them downregulated. By contrast, we found 339 DEGs between JAR1-OE and Col-0, of which 134 were downregulated and 205 were upregulated. A comparison of the RNA-seq data from Col-0 between control and drought conditions revealed 3401 DEGs, of which 2023 were down- and 1378 upregulated. By comparison, jar1-11 plants, which were most heavily affected by drought stress, showed a much higher number (6139 in total; 2616 up- and 3523 down-regulated) of DEGs, while the more drought-tolerant JAR1-OE line displayed a lower number (2025 in total; 971 up- and 1054 down-regulated) of DEGs. 2411 DEGs were found between Col-0 and jar1-11 under drought among which 966 genes showed a higher and 1445 genes a lower expression level in jar1-11. On the other hand, out of 998 DEGs found between Col-0 and JAR1-OE under drought, 737 genes showed a higher and 261 genes a lower expression level in JAR1-OE. Moreover, we found 391 DEGs counter-regulated between jar1-11 and JAR1-OE. Conclusion:RNA-seq analysis and additional experiments of plants under control and drought stress conditions provided insight into the molecular reprogramming caused by the alteration in JA-Ile content.
Project description:Small RNA sequences from Arabidopsis thaliana Col-0 inflorescence tissues of three biological replicates. The data were analyzed to identify non-templated nucleotides in Arabidopsis small RNAs.