Project description:Escherichia coli and Staphylococcus aureus are two common pathogenic microorganisms that cause mastitis in dairy cows. They can cause clinical mastitis and subclinical mastitis. In recent studies, lncRNAs have been found to play an important role in the immune responses triggered by microbial inducers. However, the actions of lncRNAs in bovine mastitis remain unclear. The purpose of this study was to explore the lncRNA profile on mastitis.
Project description:Bovine mastitis causes changes in the serum exosomal miRNAs expression. Serum samples from healthy dairy cows (n = 7) were compared to those of cows with subclinical (n = 7 ) using small RAN sequencing. Three hundred fifty-five miRNAs (341 known and 14 novel ones) were identified. There were 42 miRNAs up-regulated in serum-derived EVs from cows with subclinical mastitis, including bta-miR-1246, bta-miR-2431-3p, bta-miR-126-3p, bta-miR-29a, etc. The MAPK signaling pathway was the most affected pathway by clinical mastitis. Thus, miRNA alterations in mastitis serum-derived EVs support the potential regulator role of specific miRNAs as exosomal cargo in clinical mastitis physiology.
Project description:Bovine mastitis, the infection of the mammary gland which leads to great health and economic challenges for dairy farmers is accompanied by dramatic changes in the milk proteome. In this study of naturally occurring mastitis not only have the changes in the milk proteome been quantified in subclinical and clinical mastitis but simultaneous changes in the serum proteome have also been characterised and quantified. Milk and serum samples from healthy dairy cows (n=12) were compared to those of cows with subclinical (n=10) and clinical mastitis (n=112) using TMT label-based proteomic approach. The study included the milk and serum samples taken from thirty-two dairy cows ( kept on private farms located in Croatia. All cows were checked by physical examination. Somatic cells count (SCC) and mastitis test in milk samples were performed. According to the results, cows were assigned into three groups: Group I (control, n=10) consisted of healthy cows with SCC below 400,000 cells/ml on the monthly check-up and a negative mastitis test and without any clinical sign of mastitis. Group II (subclinical mastitis, n=12) comprised cows without clinical signs of mastitis but with SCC above 400,000 cells/ml on the monthly basis and a positive mastitis test at the time of sampling. Group III (clinical mastitis, n=10) consisted of cows with clinical signs of mastitis which include changes in milk appearance (flakes and clots in milk), different stages of udder inflammation (hyperemia, edema, pain, udder enlargement and elevated udder temperature) and disturbance of general health (depression, relaxed cold ears, dehydration, elevated body temperature, increased heart and respiratory rate, decreased ruminal contraction and decreased appetite). Blood samples were taken from v. coccygea and centrifuged at 3000 g for 15 min after clotting for two hours at room temperature. Serum samples were stored at -80°C until analysis. Milk samples were taken aseptically before the morning milking. First few streams were discarded. Teat ends were disinfected with cotton swabs soaked with 70% ethanol. Samples were taken into sterile tubes and transported to laboratory on ice within a few hours.
Project description:Purpose: to detect expression profile of differentially expressed mRNAs during bovine mammary epithelial cells (MAC-T) transfected with miR-375 inhibitor or negative control (NC) inhibitor in vitro. Methods: bovine mammary epithelial cells were transfected with miR-375 inhibitor or negative control (NC) inhibitor to assess the expression profiles of mRNAs using RNA-seq. Results: silencing miR-375 down-regulated and upregulated the expression of 48 and 15 mRNAs, respectively, in bovine mammary epithelial cells. Conclusion: miR-375 silencing dysregulated the expression of 63 mRNAs in bMECs. Also, miR-375 silencing increased the expression of NR4A1 and PTPN5 genes, all anti-inflammatory genes, via the MAPK signaling pathway. Given the negative correlation between miR-375 expression and NR4A1 and PTPN5 genes, miR-375 potentially promotes inflammation in the mammary gland through the MAPK signaling pathway. The findings of this study provide a new perspective of treating mastitis in cows.