Project description:RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We find disrupted nuclear RNA surveillance is oncogenic. Cyclin Dependent Kinase 13 (CDK13) is mutated in melanoma and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We find recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.
Project description:RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We find disrupted nuclear RNA surveillance is oncogenic. Cyclin Dependent Kinase 13 (CDK13) is mutated in melanoma and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We find recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.
Project description:RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We find disrupted nuclear RNA surveillance is oncogenic. Cyclin Dependent Kinase 13 (CDK13) is mutated in melanoma and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We find recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.
Project description:This series includes microarrays from 36 patient samples and 2 cell-culture controls, used to optimize and validate the pathogen detection microarray (Wong, et. al. 2007) Keywords: viral pathogen detection
Project description:Meningitis is a complex disease which can be caused by infection with either viral or bacterial pathogens. Viral meningitis is usually a sterile self-limiting disease with a good clinical prognosis, while bacterial meningitis is a potentially more serious disease with a higher mortality rate. Early diagnosis of bacterial meningitis is of paramount importance, as intervention with antimicrobial therapy increases the likelihood of a favourable clinical outcome. Routine diagnosis in many laboratories is still dependent to some degree on traditional methods e.g. culture, though molecular methods have been developed which can give a shorter time to diagnosis. However, there is not as yet a single test format that can detect all bacterial pathogens capable of causing meningitis. In addition, many tests e.g. real-time PCR have a finite limit for multiplexing and do not provide additional information such as strain or serogroup which is useful during outbreaks and for retrospective epidemiological surveillance. To this end we have developed a microarray probe set for detection of meningitis-associated bacterial pathogens including those in the N. meningitidis serogroups. Here we demonstrate utility of this array in specific detection of represented bacterial species and strains and in detection of pathogen signals in cerebrospinal fluid samples from patients with suspected bacterial meningitis. This method shows promise for development as a diagnostic tool; however, we discuss the technical issues encountered and suggest mechanisms to improve resolution of pathogen-specific signals in complex clinical samples. We designed as part of a larger pan-pathogen microarray a sub-set of probes to meningitis-associated bacterial pathogens. We present here data confirming the pathogen-specificity of many of these probes and their potential use in clinical diagnosis through testing on a small number of patient clinical samples using human DNA and no added nucleic acid controls. These data are from single channel Cy3-labelled nucleic acids. Four technical replicates for each feature are included on the array.
Project description:RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We find disrupted nuclear RNA surveillance is oncogenic. Cyclin Dependent Kinase 13 (CDK13) is mutated in melanoma and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We find recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.
Project description:RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We find disrupted nuclear RNA surveillance is oncogenic. Cyclin Dependent Kinase 13 (CDK13) is mutated in melanoma and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We find recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.
Project description:RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We find disrupted nuclear RNA surveillance is oncogenic. Cyclin Dependent Kinase 13 (CDK13) is mutated in melanoma and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We find recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.