Project description:Deciphering the regulatory networks encoded in the genome of an organism represents one of the most interesting and challenging tasks in the post-genome sequencing era. As an example of this problem, we have predicted a detailed model for the nitrogen assimilation network in cyanobacterium Synechococcus sp. WH 8102 (WH8102) using a computational protocol based on comparative genomics analysis and mining experimental data from related organisms that are relatively well studied. This computational model is in excellent agreement with the microarray gene expression data collected under ammonium-rich versus nitrate-rich growth conditions, suggesting that our computational protocol is capable of predicting biological pathways/networks with high accuracy. We then refined the computational model using the microarray data, and proposed a new model for the nitrogen assimilation network in WH8102. An intriguing discovery from this study is that nitrogen assimilation affects the expression of many genes involved in photosynthesis, suggesting a tight coordination between nitrogen assimilation and photosynthesis processes. Moreover, for some of these genes, this coordination is probably mediated by NtcA through the canonical NtcA promoters in their regulatory regions.
Project description:We constructed a tiling microarray, covering nearly all of the intergenic regions larger than 50 bp on both strands of the genome of the marine picocyanobacterium Synechococcus WH7803. We analyzed transcript levels from cultures grown under ecologically relevant stress conditions. The investigated stress conditions were cold stress, high light stress, phosphate depletion and iron depletion. We identified several previously unknown small RNAs, partially differentially expressed. The detected RNAs provide a starting point for further investigations on the acclimatisation to different stresses for Synechococcus WH7803.
Project description:Two sets of microarray experiments examining the transcriptional response to Ni deprivation. One set was for growth on ammonium and the other for growth on urea Pairwise replicated comparisons (Ni deprivation in urea and ammonia)
Project description:We constructed a tiling microarray, covering nearly all of the intergenic regions larger than 50 bp on both strands of the genome of the marine picocyanobacterium Synechococcus WH7803. We analyzed transcript levels from cultures grown under ecologically relevant stress conditions. The investigated stress conditions were cold stress, high light stress, phosphate depletion and iron depletion. We identified several previously unknown small RNAs, partially differentially expressed. The detected RNAs provide a starting point for further investigations on the acclimatisation to different stresses for Synechococcus WH7803. For every applied growth condition the cultures were grown in triplicates as were the respective controls. Respective controls were treated the same as the stressed bacterial cultures in terms of centrifugation and / or dilution. Bacteria were harvested by rapid filtering and directly freezed by liquid nitrogen.