Project description:Adult BALB/c female mice were injected intraperitoneally with a single dose at 20 mg per kg of antisense oligonucleotide either against miR-29a (5’-TAACCGATTTCAGATGGTGCTA-3’) or against a scrambled sequence (5’-TCATTGGCATGTACCATGCAGCT-3’ Antisense oligonucleotides contained 2’-O-methoxyethyl (2’-MOE), 2’-flouro (2’-F) 2'-alpha-flouro units with a phosphorothioate backbone (Regulus Therapeutics). Six days following the injection, liver was isolated, total RNA was prepared as described above, and the RNA was amplified and biotinylated using the MessageAmp Premier kit (Ambion). Samples (n=4 each experimental and control) were hybridized to Affymetrix GeneChip Mouse Genome 430 2.0 Arrays in the Children’s Hospital of Philadelphia Nucleic Acids Core Facility and analyzed with the assistance of the Penn Bioinformatics Core. Probe intensities were normalized using the GCRMA method and the significance of the log2-transformed, GCRMA-normalized signal intensities was determined using SAM Adult mice injected with anti-miR-29a or scrambled control ASO, n=4 per group
Project description:miR-29a/b1 was reported to be involved in the regulation of reproductive function in female mice, but the underlying molecular mechanisms were not clear. In this study, female mice lacking miR-29a/b1 showed a delay in vaginal opening, irregular estrus cycles, ovulation disorder and infertility. However, the development of egg was normal in mutant mice and the ovulation disorder could be rescued by the superovulation treatment. The plasma level of luteinizing hormone (LH) was significantly lower in the mutant mice. Using iTRAQ coupled with LC-MS/MS, we found that the deficiency of miR-29a/b1 in mice resulted in an abnormal expression of a number of proteins involved in vesicular transport and secretion in the pituitary gland. The miR-29a/b1 targeting gene Dnmt3a and Hdac4 were up-regulated in the pituitary of miR-29a/b1 knockout mice suggesting that these two epigenetic writers may be the upstream causes for these phenotype changes due to miR-29a/b1 deficiency. These findings demonstrated that miR-29a/b1 is indispensable for the function of the reproductive axis through regulating LH secretion in the pituitary gland.
Project description:Visual cortical circuits show profound plasticity during early life and are later stabilized by molecular "brakes" limiting excessive circuit rewiring beyond a critical period. How the appearance of these factors is coordinated during the transition from development to adulthood remains unknown. We analyzed the role of miR-29a, a miRNA targeting factors involved in several important pathways for plasticity such as extracellular matrix and chromatin regulation. We found that visual cortical miR-29a expression in the visual cortex dramatically increases with age, but it is not experience-dependent. Precocious high levels of miR-29a induced by targeted intracortical injections of a miR-29a mimic blocked ocular dominance plasticity and caused an early appearance of perineuronal nets. Conversely, inhibition of miR-29a in adult mice using LNA antagomirs activated ocular dominance plasticity, reduced perineuronal net intensity and number, and changed their chemical composition restoring permissive low chondroitin 4-O-sulfation levels characteristic of juvenile mice. Activated adult plasticity had the typical functional and proteomic signature of juvenile plasticity. Transcriptomic and proteomic studies indicated that miR-29a manipulation regulates the expression of plasticity factors acting at different cellular levels, from chromatin regulation to synaptic organization and extracellular matrix remodeling. Intriguingly, the projection of miR-29a regulated gene dataset onto cell-specific transcriptomes revealed that parvalbumin-positive interneurons and oligodendrocytes were the most affected cells. Overall, miR29a is a master regulator of the age-dependent plasticity brakes promoting stability of visual cortical circuits.
Project description:Visual cortical circuits show profound plasticity during early life and are later stabilized by molecular "brakes" limiting excessive circuit rewiring beyond a critical period. How the appearance of these factors is coordinated during the transition from development to adulthood remains unknown. We analyzed the role of miR-29a, a miRNA targeting factors involved in several important pathways for plasticity such as extracellular matrix and chromatin regulation. We found that visual cortical miR-29a expression in the visual cortex dramatically increases with age, but it is not experience-dependent. Precocious high levels of miR-29a induced by targeted intracortical injections of a miR-29a mimic blocked ocular dominance plasticity and caused an early appearance of perineuronal nets. Conversely, inhibition of miR-29a in adult mice using LNA antagomirs activated ocular dominance plasticity, reduced perineuronal net intensity and number, and changed their chemical composition restoring permissive low chondroitin 4-O-sulfation levels characteristic of juvenile mice. Activated adult plasticity had the typical functional and proteomic signature of juvenile plasticity. Transcriptomic and proteomic studies indicated that miR-29a manipulation regulates the expression of plasticity factors acting at different cellular levels, from chromatin regulation to synaptic organization and extracellular matrix remodeling. Intriguingly, the projection of miR-29a regulated gene dataset onto cell-specific transcriptomes revealed that parvalbumin-positive interneurons and oligodendrocytes were the most affected cells. Overall, miR29a is a master regulator of the age-dependent plasticity brakes promoting stability of visual cortical circuits.
Project description:Inhibition of miR-361-3p by locked nucleic acid (LNA)/DNA antisense oligonucleotide markedly suppressed the growth of GFP-SAS cells. We explored the target genes of miR-361-3p in GFP-SAS cells using microarray analysis.
Project description:Age-related hearing loss (ARHL) is the most common sensory degenerative disease and can significantly impact the quality of life in elderly people. A previous study using GeneChip miRNA microarray assays showed that the expression of miR-29a changes with age, however, its role in hearing loss is still unclear. In this study, we characterized the cochlear phenotype of miR-29a knockout (miR-29a-/-) mice and found that miR-29a-deficient mice had a rapid progressive elevation of the hearing threshold from 2 to 5 months of age compared with littermate controls as measured by the auditory brainstem response. Stereocilia degeneration, hair cell loss and abnormal stria vascularis were observed in miR-29a-/- mice at 4 months of age. Transcriptome sequencing results showed elevated extracellular matrix (ECM) gene expression in miR-29a-/- mice. Both GO annotation and KEGG pathway enrichment analysis revealed that the key differences were closely related to ECM. Further examination with a transmission electron microscope showed thickening of the basilar membrane in the cochlea of miR-29a-/- mice. Five Col4a genes (Col4a1-a5) and two laminin genes (Lamb2 and Lamc1) were validated as miR-29a direct targets by dual luciferase assays and miR-29a inhibition assays with a miR-29a inhibitor. Consistent with the target gene validation results, the expression of these genes was significantly increased in the cochlea of miR-29a-/- mice, as shown by RT-PCR and Western blot. These findings suggest that miR-29a plays an important role in maintaining cochlear structure and function by regulating the expression of collagen and laminin and that the disturbance of its expression could be a cause of progressive hearing loss.
Project description:Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5’tRF transfer RNA fragments and microRNA miR-194-5p. Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5’tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5’tRF levels while increasing lipid accumulation. Importantly, transfecting fattened cells with a synthetic LysTTT-5’tRF mimic elevated mRNA levels of the metabolic regulator β-Klotho while decreasing triglyceride amounts by 30% within 24 hours. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5’tRF levels. The different yet complementary roles of miR-194-5p and LysTTT-5’tRF offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.
Project description:Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5’tRF transfer RNA fragments and microRNA miR-194-5p. Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5’tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5’tRF levels while increasing lipid accumulation. Importantly, transfecting fattened cells with a synthetic LysTTT-5’tRF mimic elevated mRNA levels of the metabolic regulator β-Klotho while decreasing triglyceride amounts by 30% within 24 hours. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5’tRF levels. The different yet complementary roles of miR-194-5p and LysTTT-5’tRF offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.