Project description:Advanced ovarian cancer is the most lethal gynecologic malignancy in the United States. Ovarian cancer cells are known to have diminished response to TGF-beta, but it remains unclear whether TGF-beta can modulate ovarian cancer cell growth in an indirect manner through cancer-associated fibroblasts (CAFs). Using transcriptome profiling analyses on TGF-beta-treated ovarian fibroblasts, we identified a TGF-beta-responsive gene signature in ovarian fibroblasts. Identifying TGF-beta-regulated genes in the ovarian microenvironment helps in understanding the role of TGF-beta in ovarian cancer progression. The human telomerase-immortalized ovarian fibroblast line NOF151 was treated with 5ng/mL of either TGF-beta-1 or TGF-beta-2. Total RNA was isolated from control samples and TGF-beta-treated fibroblasts samples at 48 hours post-treatment, followed by cDNA synthesis, IVT and biotin labeling. Samples were then hybridized onto Affymetrix Human Genome U133 Plus 2.0 microarrays. For each treatment group, three independent samples were prepared for the microarray experiment.
Project description:Advanced ovarian cancer is the most lethal gynecologic malignancy in the United States. Ovarian cancer cells are known to have diminished response to TGF-beta, but it remains unclear whether TGF-beta can modulate ovarian cancer cell growth in an indirect manner through cancer-associated fibroblasts (CAFs). Using transcriptome profiling analyses on TGF-beta-treated ovarian fibroblasts, we identified a TGF-beta-responsive gene signature in ovarian fibroblasts. Identifying TGF-beta-regulated genes in the ovarian microenvironment helps in understanding the role of TGF-beta in ovarian cancer progression.
Project description:To recognize the influnence of WNT signaling on fibroblasts differentiation first we analyzed transformation of human cardiac fibroblasts caused by TGF-β signaling. Differential gene expression analysis demonstrated that cardiac fibroblasts 72h after treatment with TGF-β showed deregulated expression of 313 genes. We also observed that stimulation with WNT3a resulted in deregulation of 124 genes in TGF-β-treated fibroblasts and in contrast to profound effect of WNT3a on fibroblasts differentiation, treatment with WNT5a upregulated expression of only 2 and downregulated 21 genes in TGF-β-activated cells.