Project description:This SuperSeries is composed of the following subset Series: GSE40238: Genome-wide maps of FoxP3 binding in transduced CD4+ T cells GSE40273: Gene expression profiling in Treg cells deficient or mutant in candidate FoxP3 cofactors GSE40274: Gene profiling data of CD4+ T cells transduced with FOXP3 and candidate cofactors GSE40276: Gene profiling data of CD4+ T cells transduced with FOXP3 and GATA1, then sorted into different fractions, based on the expression of Thy1.1 (FOXP3) GSE40277: Gene profiling data of CD4+ T cells doubly transduced with EOS+LEF1 or GATA1+SATB1 Refer to individual Series
Project description:The transcription factor FoxP3 partakes dominantly in the specification and function of FoxP3+ CD4+ T regulatory cells (Tregs), but is neither strictly necessary nor sufficient to determine the characteristic Treg transcriptional signature. Computational network inference and experimental testing assessed the contribution of several other transcription factors (TFs). Enforced expression of Helios or Xbp1 elicited specific signatures, but Eos, Irf4, Satb1, Lef1 and Gata1 elicited exactly the same outcome, synergizing with FoxP3 to activate most of the Treg signature, including key TFs, and enhancing FoxP3 occupancy at its genomic targets. Conversely, the Treg signature was robust to inactivation of any single cofactor. A redundant genetic switch thus locks-in the Treg phenotype, a model which accounts for several aspects of Treg physiology, differentiation and stability. To study the impact of deficiency of candidate FoxP3 cofactors (Xbp1, Eos, Gata1) on the expression of the Treg transcriptional signature, gene expression profiles were generated from purified splenic CD4+CD25hi Tregs of these mutant or knockout mice and their wildtype littermates.
Project description:The transcription factor FoxP3 partakes dominantly in the specification and function of FoxP3+ CD4+ T regulatory cells (Tregs), but is neither strictly necessary nor sufficient to determine the characteristic Treg transcriptional signature. Computational network inference and experimental testing assessed the contribution of several other transcription factors (TFs). Enforced expression of Helios or Xbp1 elicited specific signatures, but Eos, Irf4, Satb1, Lef1 and Gata1 elicited exactly the same outcome, synergizing with FoxP3 to activate most of the Treg signature, including key TFs, and enhancing FoxP3 occupancy at its genomic targets. Conversely, the Treg signature was robust to inactivation of any single cofactor. A redundant genetic switch thus locks-in the Treg phenotype, a model which accounts for several aspects of Treg physiology, differentiation and stability. To study the impact of FoxP3 and its candidate cofactors (Eos, Gata1, Helios, Irf4, Lef1, Satb1, Xbp1) on the expression of the Treg transcriptional signature, CD4+ conventional T cells (Tconv) activated with anti-CD3+CD28 beads were retrovirally transduced with cDNAs encoding FOXP3, candidate TFs, or a combination of FOXP3 and candidate TFs. After 3 days in culture, the transduced cells were sorted into Trizol, and RNA was purified, labeled and hybridized to Affymetrix arrays.
Project description:Regulatory T (Treg) cells are important regulators of the immune system and have versatile functions for the homeostasis and repair of tissues. They express the forkhead box transcription factor Foxp3 as a lineage-defining protein. In mature Treg cells, the Foxp3 core promoter is unmethylated indicating that this area could harbor a transcription factor complex to initiate or repress gene expression, respectively. We used an unbiased method to identify Foxp3-promoter-binding transcription factors (TFs) by inverted chromatin immunoprecipitation (IP) followed by quantitative mass spectrometry. We identified several candidate factors which showed Foxp3-promoter suppressive capacity, one of which was T-cell factor 1 (Tcf1). Using viral overexpression and CRISPR/Cas knockout studies, we identified Tcf1 as a repressor of Foxp3 expression in primary conventional CD4 T cells (Tconv). In Tcf1-deficient animals, increased levels of Foxp3intermediateCD25negative T cells were identified in secondary lymphoid tissues, implicating that Tcf1 protects Foxp3-negative T cells from inadvertent Foxp3 expression.
Project description:Project abstract: Foxp3+ T regulatory (Treg) cells have important functions in suppressing immune cell activation and establishing normal immune homeostasis. How Treg cells maintain their identity is not completely understood. Here we show that Ndfip1, a co-activator of Nedd4-family E3 ubiquitin ligases, is required for Treg cell stability and function. Ndfip1 deletion in Treg cells disrupts immune homeostasis and results in autoinflammatory disease. Ndfip1-deficient Treg cells are highly proliferative and are more likely to lose Foxp3 expression to become IL-4-producing TH2 effector cells. Proteomic analyses indicate that Ndfip1 deficiency alters the metabolic signature of Treg cells. Metabolic profiling reveals elevated glycolysis and increased mTORC1 signalling. Additional data suggest that Ndfip1 restricts Treg cell metabolic capacity and IL-4 production via distinct mechanisms. Thus, Ndfip1 preserves Treg lineage stability by preventing the expansion of highly proliferative and metabolically active cells that can cause immunopathology via secretion of IL-4.
Project description:The Foxp3 transcription factor is a crucial determinant of both regulatory T (TREG) cell development and their functional maintenance. Appropriate modulation of tolerogenic immune responses therefore requires tight regulation of Foxp3 transcriptional output, and this involves both transcriptional and post-translational regulation. Here, we show that during T cell activation, phosphorylation of Foxp3 in TREG cells can be regulated by a TGFβ Activated Kinase 1 (TAK1)-Nemo Like Kinase (NLK) signaling pathway. NLK interacts with Foxp3 in TREG cells and directly phosphorylates Foxp3 on multiple serine residues. This phosphorylation results in stabilization of Foxp3 protein levels by preventing association with the STUB1 E3-ubiquitin protein ligase, resulting in both reduced ubiquitination and proteasome-mediated degradation. Conditional TREG cell NLK-knockout (NLKTREG) results in decreased TREG cell-mediated immunosuppression in vivo and NLK-deficient TREG cell animals develop more severe experimental autoimmune encephalomyelitis. Our data suggest a molecular mechanism, in which stimulation of TCR-mediated signaling can induce a TAK1-NLK pathway to sustain Foxp3 transcriptional activity through stabilization of protein levels, thereby maintaining TREG cell suppressive function. Pharmacological manipulation of this phosphorylation-ubiquitination axis may provide therapeutic opportunities for regulating TREG cell function, for example during cancer immunotherapy.
Project description:expression profile in Bcl11b-deficient Treg cells versus wild type Treg cells Treg cells sorted from Bcl11bF/F/Cd4Cre/Foxp3-GFP+ mice and wild type Foxp3-GFP+ mice Treg cells sorted from Bcl11bF/F/Foxp3Cre mice and wild type mice RNA extracted from sorted Bcl11b-deficient Foxp3-GFP Treg cells form Bcl11bF/F/Cd4Cre/Foxp3-GFP+ mice and wild type Foxp3-GFP Treg cells; expression profile by microarray analysis RNA extracted from sorted Bcl11b-deficient Treg cells form Bcl11bF/F/Foxp3Cre mice and wild type Treg cells; expression profile by microarray analysis