Project description:Soil Aquifer Treatment (SAT) is recognized as a cost-effective approach to reduce contaminants of emerging concern (CECs) from Wastewater Treatment Plant (WWTP) effluents. However, its efficiency in removing the associated biological effects is still poorly understood. Here, we evaluated the efficiency of three pilot SAT systems, two of them enhanced with reactive barriers containing different proportions of sand and organic materials, in removing toxicity associated to CECs. SATs were fed with secondary effluents from the Palamós WWTP (N.E. Spain) during two consecutive campaigns scheduled before and after the summer of 2020. Fifteen water samples were collected from the WWTP effluent, below the barriers and 15 m into the aquifer. Transcriptomic analyses of zebrafish embryos exposed to the corresponding water extracts revealed a wide range of toxic activities in the WWTP effluents. Results demonstrated that the associated responses were reduced by more than 70% by SAT, achieving control levels in some cases. Similar results were obtained when human HepG2 hepatic cells were tested for cytotoxic and dioxin-like responses. Toxicity reduction appeared to be partially determined by the reactive barrier composition and/or SAT managing and was correlated with the removal of CECs by SAT. In conclusion, SAT appears to be a very promising approach for efficiently reducing the effects of recalcitrant pollutants from WWTP secondary effluents on the environment and human health.
Project description:We investigated the toxicity of soil samples derived from a former municipal landfill site in the South of the Netherlands, where a bioremediation project is running aiming at reusing the site for recreation. Both an organic soil extract and the original soil sample was investigated using the ISO standardised Folsomia soil ecotoxicological testing and gene expression analysis. The 28 day survival/reproduction test revealed that the ecologically more relevant original soil sample was more toxic than the organic soil extract. Microarray analysis showed that the more toxic soil samples induced gene regulatory changes in twice as less genes compared to the soil extract. Consequently gene regulatory changes were highly dependent on sample type, and were to a lesser extent caused by exposure level. An important biological process shared among the two sample types was the detoxification pathway for xenobiotics (biotransformation I, II and III) suggesting a link between compound type and observed adverse effects. Finally, we were able to retrieve a selected group of genes that show highly significant dose-dependent gene expression and thus were tightly linked with adverse effects on reproduction. Expression of four cytochrome P450 genes showed highest correlation values with reproduction, and maybe promising genetic markers for soil quality. However, a more elaborate set of environmental soil samples is needed to validate the correlation between gene expression induction and adverse phenotypic effects.
Project description:Purpose: Deconstructing the soil microbiome into reduced-complexity functional modules represents a novel method of microbiome analysis. The goals of this study are to confirm differences in transcriptomic patterns among five functional module consortia. Methods: mRNA profiles of 3 replicates each of functional module enrichments of soil inoculum in M9 media with either 1) xylose, 2) n-acetylglucosamine, 3) glucose and gentamycin, 4) xylan, or 5) pectin were generated by sequencing using an Illumina platform (GENEWIZ performed sequencing). Sequence reads that passed quality filters were aligned to a soil metagenome using Burrows Wheeler Aligner. Resulting SAM files were converted to raw reads using HTSeq, and annotated using Uniref90 or EGGNOG databases. Results: To reduce the size of the RNA-Seq counts table and increase its computational tractability, transcripts containing a minimum of 75 total counts, but no more than 3 zero counts, across the 15 samples were removed. The subsequent dataset was normalized using DESeq2, resulting in a dataset consisting of 6947 unique transcripts across the 15 samples, and 185,920,068 reads. We identified gene categories that were enriched in a sample type relative to the overall dataset using Fisher’s exact test. Conclusions: our dataset confirms that the functional module consortia generated from targeted enrichments of a starting soil inoculum had distinct functional trends by enrichment type.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in EarthM-bM-^@M-^Ys biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling. Fifty four samples were collected from three soil types (Phaeozem,Cambisol,Acrisol) in three sites (Hailun, Fengqiu and Yingtan) along a latitude with reciprocal transplant; Both with and without maize cropping in each site; Three replicates in every treatments.