Project description:We used ChIP-seq to determine the whole-genome enrichment of histone H3 threonine 11 phosphorylation (H3 T11ph) during Saccharomyces cerevisiae meiosis. S. cerevisiae SK1 cells were synchronized for meiotic entry and 3 and 4 hour meiotic samples were obtained. As H3 T11ph is dependent on the formation of meiotic double strand breaks (DSBs), a negative control ChIP-seq sample was obtained from a strain lacking DSBs (spo11-yf). Concurrently, ChIP-seq was carried out for histone H3 as a control for comparision.
Project description:These three replicates were analyzed in "Genomewide identification of Sko1 target promoters reveals a regulatory network that operates in response to osmotic stress in Saccharomyces cerevisiae. ", by Proft M, Gibbons FD, Copeland M, Roth FP, Struhl K; published in Eukaryot Cell. 2005 Aug;4(8):1343-52. A new analysis algorithm for Chip-chip data ('Chipper') is described in Genome Biology. Manuscript entitled "Chipper: discovering transcription-factor targets from chromatin immunoprecipitation microarrays using variance stabilization." by FD Gibbons, M Proft, K Struhl, and FP Roth. Accepted, no publication date as yet. Keywords: ChIP-chip
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:As part of a study of establishment of silencing in Saccharomyces cerevisiae, we performed ChIP-seq on myc-tagged Sir4 in several conditions. Included in those conditions are wild-type cycling cells, cycling sir3∆ cells, and various experiments during which silencing establishment was controlled using the inducible SIR3-EBD allele. Silencing establishment experiments were performed in both wild-type and dot1∆ cells.
Project description:We report the genome-wide localization of Sgo1p in mitosis of Saccharomyces cerevisiae using ChIP-seq. The high resolution mapping clearly shows a tripartite domain of Sgo1p in each mitotic chromosome. This domain requires the wildtype tension sensing motif (TSM) of histone H3.
Project description:Genome wide mapping of RNA polymearase III binding sites in Saccharomyces cerevisiae under normal growth and nutrient starved condition using ChIP-seq. Chromatin Immuno-precipitation (ChIP) was performed for FLAG tagged version of pol III subunit RPC128 after crosslinking the log-phase cells with formaldehyde. MOCK and IP DNA was sequenced and coverage of pol III was calculated at each base of the genome.