Project description:While adipogenesis is controlled by a cascade of transcription factors, the global gene expression profiles in the early phase of adipogenesis are not well defined. Using microarray analysis of gene expression in 3T3-L1 cells we have identified evidence for the activity of 2568 genes during the early phase of adipocyte differentiation. One of these, ISL1, was of interest since its expression was markedly upregulated at 1 h after initiation of differentiation with a subsequent rapid decline. Overexpression of ISL1 at early times during adipocyte differentiation, but not at later times, was found to profoundly inhibit differentiation. This was accompanied by moderate down-regulation of PPARg levels, substantial down-regulation of PPARg downstream genes and down-regulation of BMP4 levels in preadipocytes. Readdition of BMP4 overcame the inhibitory effect of ISL1 on PPARg but not aP2 expression, a downstream gene of PPARg; and BMP4 also partially rescued ISL1 inhibition of adipogenesis, an effect which is additive with rosiglitazone. These results suggest that ISL1 is intimately involved in early regulation of adipogenesis, modulating PPARg expression and activity via BMP4-dependent and -independent mechanisms. Our time course gene expression survey sets the stage for further studies to explore other early and immediate regulators.
Project description:Visceral fat (VF) and subcutaneous fat (SF) are developmentally different tissues with different gene expression. Islet-1 (ISL1), a LIM-homeobox transcription factor with important developmental and regulatory function in islet, neural, and cardiac tissue, is virtually absent in SF but substantially expressed in the stromovascular [preadipocyte containing] fraction of VF; expression correlates negatively with adiposity in rodents and man. ISL1 expression is transiently increased in 3T3-L1 preadipocytes during early differentiation, suggesting a functional role. To examine the role of ISL1 in adipogenesis, we tested whether retroviral overexpression of ISL1 in 3T3-L1 preadipocytes affected their ability to differentiate into mature adipocytes. Terminal differentiation was assessed by Oil Red O [lipid droplet] staining and by immunoblot detection of adipocyte marker proteins, including aP2 and GLUT4. ISL1 significantly inhibited lipid droplet formation, reduced lipid accumulation (about 80% inhibition, p<0.05), and substantially inhibited aP2 and GLUT4 expression. ISL1 did not inhibit expression of C/EBPb and C/EBPd after induction of differentiation, but reduced PPARg and C/EBPa by >50% at both mRNA and protein level. In addition, the PPARg agonist, rosiglitazone, substantially rescued ISL1 inhibited adipogenesis in the absence of exogenous PPARg, and fully rescued in the presence of exogenous PPARg. In summary, ISL1 overexpression inhibited fat droplet formation, lipid accumulation, and adipocyte-specific gene expression; there was accompanying inhibition of C/EBPa, PPARg and downstream gene expression. We conclude that ISL1 overexpression inhibited adipocyte differentiation by inhibition of PPARg regulated gene expression. As abdominal obesity strongly correlates with insulin resistance, and cardiovascular risk, ISL1 up-regulation may impact abdominal obesity and its concomitant metabolic derangements. Total cellular RNA was isolated from 3T3-L1 cells expressing Flag-ISL1 or not at 48 h following treatment with differentiation cocktail. Individual RNA from biological triplicates was used for microarray analysis.
Project description:Developmental transitions are guided by master regulatory transcription factors. During adipogenesis, a transcriptional cascade culminates in expression of PPARg and C/EBPa, which orchestrate activation of the adipocyte gene expression program. However, the coactivators controlling PPARg and C/EBPa expression are less well characterized. Here we show the bromodomain-containing protein, BRD4, regulates transcription of PPARg and C/EBPa. Analysis of BRD4 chromatin occupancy reveals that induction of adipogenesis in 3T3L1 fibroblasts provokes dynamic redistribution of BRD4 to de novo super enhancers proximal to genes controlling adipocyte differentiation. BET bromodomain inhibition impedes BRD4 occupancy at these de novo enhancers and disrupts transcription of Pparg and Cebpa, thereby blocking adipogenesis. Furthermore, silencing of these BRD4-occupied distal regulatory elements at the Pparg locus by CRISPRi demonstrates a critical role for these enhancers in the control of Pparg gene expression and adipogenesis in 3T3L1s. Together, these data establish BET bromodomain proteins as time- and context-dependent coactivators of the adipocyte cell state transition.
Project description:PPARg and C/EBPa cooperate to control preadipocyte differentiation (adipogenesis). However, the factors that regulate PPARg and C/EBPa expression during adipogenesis remain largely unclear. Here we show PTIP, a protein that associates with histone H3K4 methyltransferases, regulates PPARg and C/EBPa expression in mouse embryonic fibroblasts (MEFs) and during preadipocyte differentiation. PTIP deletion in MEFs leads to marked decreases of PPARg expression and PPARg-stimulated C/EBPα expression. Further, PTIP is essential for induction of PPARg and C/EBPa expression during preadipocyte differentiation. Deletion of PTIP impairs the enrichment of H3K4 trimethylation and RNA polymerase II on PPARg and C/EBPa promoters. Accordingly, PTIP-/- MEFs and preadipocytes all show striking defects in adipogenesis. Furthermore, rescue of the adipogenesis defect in PTIP-/- MEFs requires co-expression of PPARg and C/EBPa. Finally, deletion of PTIP in brown adipose tissue significantly reduces tissue weight in mice. Thus, by regulating PPARg and C/EBPa expression, PTIP plays a critical role in adipogenesis.
Project description:PPARg and C/EBPa cooperate to control preadipocyte differentiation (adipogenesis). However, the factors that regulate PPARg and C/EBPa expression during adipogenesis remain largely unclear. Here we show PTIP, a protein that associates with histone H3K4 methyltransferases, regulates PPARg and C/EBPa expression in mouse embryonic fibroblasts (MEFs) and during preadipocyte differentiation. PTIP deletion in MEFs leads to marked decreases of PPARg expression and PPARg-stimulated C/EBPα expression. Further, PTIP is essential for induction of PPARg and C/EBPa expression during preadipocyte differentiation. Deletion of PTIP impairs the enrichment of H3K4 trimethylation and RNA polymerase II on PPARg and C/EBPa promoters. Accordingly, PTIP-/- MEFs and preadipocytes all show striking defects in adipogenesis. Furthermore, rescue of the adipogenesis defect in PTIP-/- MEFs requires co-expression of PPARg and C/EBPa. Finally, deletion of PTIP in brown adipose tissue significantly reduces tissue weight in mice. Thus, by regulating PPARg and C/EBPa expression, PTIP plays a critical role in adipogenesis. To identify PTIP-regulated genes, immortalized PTIP conditional knockout PTIPflox/flox MEFs were infected with retroviruses expressing either Cre recombinase or vector alone. We prepared duplicated RNAs from either vector or Cre infected cells (PTIP+/+ or PTIP-/-) for 4 affymetrix microarrays.
Project description:Protein kinase A phosphorylates proteins including histone H3 lysine 9 (H3K9) demethylase JMJD1A to facilitate beige adipogenesis upon β-adrenergic receptor (β-AR) activation, however, phosphatase(s) that antagonizes phosphorylation to inhibit beige adipogenesis is incompletely understood. Here we show that MYPT1-PP1β is a phosphatase that negatively regulates beige adipogenesis via dephosphorylation of pS265-JMJD1A and myosin regulatory light chain. Upon β-AR activation, MYPT1-PP1β is inhibited via T694 phosphorylation of MYPT1, facilitating phosphorylation of JMJD1A and beige adipogenesis under cold stress. Depletion of MYPT1-PP1β induces Ucp1 by orchestrating JMJD1A-mediated H3K9 demethylation and actomyosin-tension mediated YAP/TAZ activation. This induction of Ucp1 is abrogated in adipocytes expressing catalytically dead JMJD1A mutant, indicating that the coordinated epigenetic and transcriptional mechanisms are essential for beige adipogenesis. We also show that preadipocytes specific Mypt1 deficient mice exhibit higher cold tolerance with higher Ucp1 levels in subcutaneous white adipose tissues compared to control mice confirming its role at animal levels.
Project description:Genome-wide profiling of PPAR?:RXR and RNA polymerase II reveals temporal activation of distinct metabolic pathways in RXR dimer composition during adipogenesis. Chromatin immunoprecipitation combined with deep sequencing was performed to generate genome-wide maps of peroxisome prolifelator-activated receptor gamma (PPARg) and retinoid X receptor (RXR) binding sites, and RNA polymerase II (RNAPII) occupancy at high resolution throughout adipocyte differentiation of 3T3-L1 cells. The data provides the first positional and temporal map PPAR? and RXR occupancy during adipocyte differentiation at a global scale. The number of PPAR?:RXR shared binding sites is steadily increasing from D0 to D6. At Day6 there are over 5000 high confidence shared PPARy:RXR binding sites. We show that at the early days of differentiation several of these sites bind not only PPAR?:RXR but also other RXR dimers. The data also provides a comprehensive temporal map of RNAPII occupancy at genes throughout 3T3-L1 adipogenesis thereby uncovering groups of similarly regulated genes belonging to glucose and lipid metabolic pathways. The majority of the upregulated but very few downregulated genes have assigned PPAR?:RXR target sites, thereby underscoring the importance of PPAR?:RXR in gene activation during adipogenesis and indicating that a hitherto unrecognized high number of adipocyte genes are directly activated by PPAR?:RXR Examination of PPARg and RXR bindingsites during adipocyte differentiation (day 0 to 6) and association with transcription via RNAPII occupancy.
Project description:Embryonic development is largely conserved among mammals. However, certain genes show divergent functions. By generating a transcriptional atlas containing >30,000 cells from post-implantation non-human primate embryos, we uncover that ISL1, a gene with a well-established role in cardiogenesis, controls a gene regulatory network in primate amnion. CRISPR/Cas9-targeting of ISL1 results in non-human primate embryos which do not yield viable offspring, demonstrating that ISL1 is critically required in primate embryogenesis. On a cellular level, mutant ISL1 embryos display a failure in mesoderm formation due to reduced BMP4 signaling from the amnion. Via loss of function and rescue studies in human embryonic stem cells we confirm a similar role of ISL1 in human in vitro derived amnion. This study highlights the importance of the amnion as a signaling center during primate mesoderm formation and demonstrates the potential of in vitro primate model systems to dissect the genetics of early human embryonic development.
Project description:In order to gain insights into how PPARg regulates different facets of dendritic cell (DC) differentiation, we sought to identify PPARg regulated genes and gene networks in monocyte-derived dendritic cells using global gene expression profiling. We employed an exogenous ligand activation approach using a selective PPARg ligand (rosiglitazone abbreviated as RSG). In addition, we have defined culture conditions in which human serum (HS) induces PPARg activation via a yet uncharacterized endogenous mechanism. We also compared the gene expression profile of developing dendritic cells obtained from patients harboring dominant negative mutations of the PPARg receptor (C114R and C131Y). Keywords: ligand response
Project description:The hypothesis tested is that IRF3 regulates adipogenesis and adipocyte function. Global gene expression of IRF3 wildtype (WT) and knockout (KO) adipocytes at different days during differentiation was compared. The results provide evidence on how IRF3 controls PPARg -regulated adipogenic program thereby regulate adipocyte differentiation.