Project description:Ammonia-oxidizing archaea (AOA) typically predominate over ammonia-oxidizing bacteria in marine sediments. We herein present the draft genome sequence of an ammonia-oxidizing archaeon, "Candidatus Nitrosopumilus sediminis" AR2, which was enriched in culture from a marine sediment obtained off Svalbard, within the Arctic Circle. The typical genes involved in archaeal ammonia oxidation and carbon fixation necessary for chemolithoautotrophic growth were observed. Interestingly, the AR2 genome sequence was revealed to possess, uniquely among cultivated AOA from marine environments, a capability for urea utilization.
Project description:RNAseq analysis was performed to evaluate gene expression differences between strains 1-9 and PAK-AR2.P. aeruginosa PAK-AR2 and 1-9 cells were grown to OD600 of 0.8 before harvesting. The collected cells were treated with RNAprotect Bacteria Reagent (Qiagen) and subjected to snap freezing in liquid nitrogen and delivered to BGI in dry ice for transcriptome resequencing analysis.The differentially expressed genes (DEGs) were determined between PAK-AR2 and 1-9 with the standards of false discovery rate (FDR ) ≤ 0.001, fold change |log2Ratio|≥1.A total of 4,355,305 reads matched to the referenced genome in the sample of PAK-AR2, and 3,544,484 reads in the sample of 1-9.Transcriptome data showed that expression of 361 genes were upregulated while 459 genes were down regulated by at least 2-fold when comparing the srpA mutant strain 1-9 to its parent strain PAK-AR2.These genes were classified into 21 major cellular processes based on the annotation of KEGG_B_class or further grouped into several major metabolic pathways, such as ribosomal proteins, type III secretion system (T3SS), type VI secretion system (T6SS), chemotaxis, cell motility, and cell shape control.More and more small proteins that were ignored from typical genome annotations have now been experimentally demonstrated to play important regulatory roles on various bacterial metabolic.