Project description:This SuperSeries is composed of the following subset Series: GSE40655: Novel Foxo1-dependent Transcriptional Programs Control Treg Cell Function [Affymetrix gene expression data] GSE40656: Novel Foxo1-dependent Transcriptional Programs Control Treg Cell Function [ChIP-Seq] Refer to individual Series
Project description:Regulatory T (Treg) cells characterized by expression of the transcription factor forkhead box P3 (Foxp3) maintain immune homeostasis by suppressing self-destructive immune responses1-4. Foxp3 operates as a late acting differentiation factor controlling Treg cell homeostasis and function5, whereas the early Treg cell lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors6-10. However, whether Foxo proteins act beyond the Treg cell commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Treg cell function. Treg cells express high amounts of Foxo1, and display reduced T-cell receptor-induced Akt activation, Foxo1 phosphorylation, and Foxo1 nuclear exclusion. Mice with Treg cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals ~300 Foxo1-bound target genes, including the proinflammatory cytokine Ifng, that do not appear to be directly regulated by Foxp3. These findings demonstrate that the evolutionarily ancient Akt-Foxo1 signaling module controls a novel genetic program indispensable for Treg cell function. Treg cells were isolated from wild-type B6 mice or Foxo1tagBirA mice in which foxo1 is endogenously biotinylated. Foxo1 binding targets in Treg cells were identified by using Foxo1 antibody- and Streptavidin- ChIP-Seq approaches.
Project description:Regulatory T (Treg) cells characterized by expression of the transcription factor forkhead box P3 (Foxp3) maintain immune homeostasis by suppressing self-destructive immune responses1-4. Foxp3 operates as a late acting differentiation factor controlling Treg cell homeostasis and function5, whereas the early Treg cell lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors6-10. However, whether Foxo proteins act beyond the Treg cell commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Treg cell function. Treg cells express high amounts of Foxo1, and display reduced T-cell receptor-induced Akt activation, Foxo1 phosphorylation, and Foxo1 nuclear exclusion. Mice with Treg cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals ~300 Foxo1-bound target genes, including the proinflammatory cytokine Ifng, that do not appear to be directly regulated by Foxp3. These findings demonstrate that the evolutionarily ancient Akt-Foxo1 signaling module controls a novel genetic program indispensable for Treg cell function. Regulatory T cells were FACS sorted in WT mice (2 reps), Foxo1 KO mice (2 reps), mice expressing a constitutively active form of Foxo1 (1 rep), and Foxo1 KO mice expressing constitutively active Foxo1. We identified genes differentially expressed in WT vs. KO mice and assessed whether expression was recovered in the KO in presence of constitutively active Foxo1
Project description:Regulatory T (Treg) cells characterized by expression of the transcription factor forkhead box P3 (Foxp3) maintain immune homeostasis by suppressing self-destructive immune responses1-4. Foxp3 operates as a late acting differentiation factor controlling Treg cell homeostasis and function5, whereas the early Treg cell lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors6-10. However, whether Foxo proteins act beyond the Treg cell commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Treg cell function. Treg cells express high amounts of Foxo1, and display reduced T-cell receptor-induced Akt activation, Foxo1 phosphorylation, and Foxo1 nuclear exclusion. Mice with Treg cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals ~300 Foxo1-bound target genes, including the proinflammatory cytokine Ifng, that do not appear to be directly regulated by Foxp3. These findings demonstrate that the evolutionarily ancient Akt-Foxo1 signaling module controls a novel genetic program indispensable for Treg cell function.
Project description:Regulatory T (Treg) cells characterized by expression of the transcription factor forkhead box P3 (Foxp3) maintain immune homeostasis by suppressing self-destructive immune responses1-4. Foxp3 operates as a late acting differentiation factor controlling Treg cell homeostasis and function5, whereas the early Treg cell lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors6-10. However, whether Foxo proteins act beyond the Treg cell commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Treg cell function. Treg cells express high amounts of Foxo1, and display reduced T-cell receptor-induced Akt activation, Foxo1 phosphorylation, and Foxo1 nuclear exclusion. Mice with Treg cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals ~300 Foxo1-bound target genes, including the proinflammatory cytokine Ifng, that do not appear to be directly regulated by Foxp3. These findings demonstrate that the evolutionarily ancient Akt-Foxo1 signaling module controls a novel genetic program indispensable for Treg cell function.
Project description:Phosphatidylinositol-3-kinase p110 delta (PI3Kp110δ) is pivotal for CD8+ T cell immune responses. To inform how PI3Kp110δ regulates CD8+ T cells, the current study focuses on PI3Kp110δ controlled transcriptional programs and reveals how PI3Kp110δ selectively induces and represses expression of key genes that create a cytotoxic T cell (CTL). The data identify differences in PI3Kp110δ regulated transcriptional programs between naïve and cytotoxic T cells including differential control of cytolytic effector molecules, costimulatory receptors and the critical inhibitory receptors CTLA4 and SLAMF6. However, common to both naïve and effector cells is PI3Kp110δ control of the production of chemokines and cytokines that orchestrate communication between the adaptive and innate immune system. The study provides a comprehensive resource for understanding how PI3Kp110δ uses multiple mechanisms dependent on Protein Kinase B/AKT, FOXO1 dependent and independent mechanisms and mitogen-activated protein kinases (MAPK) to direct CD8+ T cell fate.
Project description:Phosphatidylinositol-3-kinase p110 delta (PI3Kp110δ) is pivotal for CD8+ T cell immune responses. To inform how PI3Kp110δ regulates CD8+ T cells, the current study focuses on PI3Kp110δ controlled transcriptional programs and reveals how PI3Kp110δ selectively induces and represses expression of key genes that create a cytotoxic T cell (CTL). The data identify differences in PI3Kp110δ regulated transcriptional programs between naïve and cytotoxic T cells including differential control of cytolytic effector molecules, costimulatory receptors and the critical inhibitory receptors CTLA4 and SLAMF6. However, common to both naïve and effector cells is PI3Kp110δ control of the production of chemokines and cytokines that orchestrate communication between the adaptive and innate immune system. The study provides a comprehensive resource for understanding how PI3Kp110δ uses multiple mechanisms dependent on Protein Kinase B/AKT, FOXO1 dependent and independent mechanisms and mitogen-activated protein kinases (MAPK) to direct CD8+ T cell fate.
Project description:Identification of Foxos target genes in Treg cells. Foxo1and Foxo3 are transcription factors of Foxo family. CD4+Foxp3+ Treg cells isolated from wild-type and Foxo1/3-deficient mice were analyzed by global gene expression profiling. Results indicate Foxos regulate expression of a subset of Treg cell signature genes and genes in control of T cell homeostasis, signaling and metabolism. 2 sets wild-type and Foxo1/3-deficient CD4+Foxp3+ Treg cells