Project description:The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly improved with the availability of physically positioned, gene-based genetic markers and accurate genome annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection on two varieties that are parents of a mapping population to aid in development of a marker system for this population and subsequent development of high-resolution genetic map. An improved Brassica rapa transcriptome was constructed to detect novel transcripts and to improve the current genome annotation. Deep RNA-Seq of two Brassica rapa genotypesâR500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid cycling variety)âusing eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem, silique, and seedling) grown across three different environments (growth chamber, greenhouse and field) and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality Illumina reads. In this experiment, two pools were made, with one pool consisting of 66 samples collected from growth chamber and another pool consisting of 60 samples collected from greenhouse and field. Each pool was sequenced on eight lanes (total 16 lanes) of an Illumina Genome Analyzer (GAIIx) as 100-bp paired end reads.
Project description:Numerous regulatory genes participate in plant thermotolerance. In Arabidopsis, HEAT-INDUCED TAS1 TARGET2 (HTT2) is an important thermotolerance gene that is silenced by ta-siR255, a trans-acting siRNA. ta-siR255 is absent from heading Chinese cabbage (Brassica rapa ssp. pekinensis). Our previous attempt to overexpress the endogenous BrpHTT2 gene of heading Chinese cabbage (B. rapa ssp. pekinensis) failed because of cosuppression. In theory, heading Chinese cabbage can overexpress Arabidopsis HTT2 to improve thermotolerance in the absence of ta-siR255-mediated gene silencing and the weak potential of coexpression.To test the potential application of HTT2 in improving crop thermotolerance, we transferred p35S::HTT2 to heading Chinese cabbage. We tested the leaf electrical conductivity, hypocotyl elongation, and survival percentage of p35S::HTT2 plants subjected to high-temperature (38 °C) and heat-shock (46 °C) treatment. The leaf electrical conductivity of p35S::HTT2 seedlings under high temperature decreased but did negligibly change under heat shock. The hypocotyl length of p35S::HTT2 seedlings increased under high temperature and heat shock. The survival rate of p35S::HTT2 seedlings increased under heat shock. BrpHsfs, a subset of heat-shock factor genes, were upregulated in p35S::HTT2 plants under high-temperature and heat shock conditions. In the field, transgenic plants with HTT2 appeared greener and formed leafy heads earlier than wild-type plants.Exogenous HTT2 increased the survival rates of heat-shocked heading Chinese cabbage by promoting thermotolerance through decreasing electrical conductivity and extending hypocotyl length. Our work provides a new approach to the genetic manipulation of thermotolerance in crops through the introduction of exogenous thermotolerance genes.
Project description:Transcription profiling by array of 10 days old Brassica rapa ssp. chinensis seedlings treated with 2mM methyl jasmonate by spraying and harvesting 48 hours past treatment