Project description:Meis1 is found cooperatively activated with Hoxa7/a9 in AML, and it indeed promotes leukemogenic activities of Hoxa9. It is important to identify downstream target genes of Meis1 to understand its cooperative activity with Hoxa9 in leukemogenesis. We used microarrays to detail the global programme of gene expression upon Meis1 knockout. Murine primary bone marrow cells of the Rosa26-Cre-ERT2 knock-in mouse were transformed by retroviral transduction of Hoxa9 and floxed Meis1. The immortalized bone marrow cells were treated with 2 μM of 4-hydroxytamoxifen to delete Meis1 cDNA. Gene expression profiles were compared between the original Hoxa9/Meis1-expressing cells and Meis1 deleted (Hoxa9 only) cells.
Project description:OBJECTIVE: MEIS1, a HOX cofactor, collaborates with multiple HOX proteins, such as HOXA9, to accelerate the onset of acute myeloid leukemia (AML) through largely unknown molecular mechanisms. To further resolve these mechanisms, we conducted a structure-function analysis of Meis1 and gene expression profiling, in the context of Hoxa9 leukemogenesis. RESULTS: We show, in a murine bone marrow transplantation model, that the homeodomain of Meis1 is required for leukemogenic collaboration with Hoxa9. Gene expression profiling of a Hoxa9 preleukemic cell line transduced with wild-type or Meis1 homeodomain mutant reveal deregulation of multiple genes including a set not previously implicated as Meis1 targets. Murine bone marrow cells transduced with Hoxa9-GFP + empty MIY vector were compared to Hoxa9+Meis1 cells or Hoxa9+Meis1 with deleted homeodomain (DHD) cells and cultured for three or four weeks before harvest for miRNA expression array. Four independent experiments were performed for each of the three different conditions included in the study. Cells from all samples were also transplanted into lethally irradiated mice to test for their transforming and leukemic potential.
Project description:ATAC-seq profiling of Nfat5 KO and wild type macrophages derived from bone marrow (primary cells), treated or not with Lipopolysaccharide (LPS).
Project description:To investigate whether co-expression of PBX3/MEIS1 can mimic that of MLL-AF9, HOXA9/MEIS1 or HOXA9/PBX3 in inducing leukemogenesis, we conducted in vivo mouse bone marrow transplantation (BMT) assays. Briefly, normal mouse bone marrow (BM) progenitor (i.e., lineage negative; Lin-) cells collected from B6.SJL (CD45.1) donor mice (CD45.1) were retrovirally co-transduced with MSCVneo-MLL-AF9+MSCV-PIG (MLL-AF9), MSCVneo-HOXA9+MSCV-PIG (HOXA9), MSCVneo-HOXA9+MSCV-PIG-MEIS1 (HOXA9+MEIS1), MSCVneo-HOXA9+MSCV-PIG-PBX3 (HOXA9+PBX3), MSCV-PIG-PBX3+MSCVneo-MEIS1 (PBX3+MEIS1), MSCVneo+MSCV-PIG-PBX3 (PBX3) , MSCVneo+MSCV-PIG-MEIS1 (MEIS1), or MSCVneo+MSCV-PIG (normal control; NC). Retrovirally transduced cells then were cultured with cytokines as well as puromycin and G418. Seven days later, the donor cells were transplanted into lethally irradiated (960 rads) 8- to 10-week-old C57BL/6 (CD45.2) recipient mice. The transplanted mice were watched for leukemogenesis. Then, gene expression profiling was conducted with bone marrow samples collected from leukemia groups and control group.
Project description:OBJECTIVE: MEIS1, a HOX cofactor, collaborates with multiple HOX proteins, such as HOXA9, to accelerate the onset of acute myeloid leukemia (AML) through largely unknown molecular mechanisms. To further resolve these mechanisms, we conducted a structure-function analysis of Meis1 and gene expression profiling, in the context of Hoxa9 leukemogenesis. RESULTS: We show, in a murine bone marrow transplantation model, that the homeodomain of Meis1 is required for leukemogenic collaboration with Hoxa9. Gene expression profiling of a Hoxa9 preleukemic cell line transduced with wild-type or Meis1 homeodomain mutant reveal deregulation of multiple genes including a set not previously implicated as Meis1 targets.