Project description:Commercial linear alkylbenzenesulfonate (LAS) contains 20 congeners of linear alkanes (C(10) to C(13)) substituted subterminally with the 4-sulfophenyl moiety in any position from lateral to central. Parvibaculum lavamentivorans DS-1(T) degrades each of eight laterally substituted congeners [e.g., 2-(4-sulfophenyl)decane (2-C10-LAS); herein, compounds are named systematically by chain length (e.g., C(10)) and by the position of the substituent on the chain (e.g., position 2)] to a major sulfophenyl carboxylate [SPC; here 3-(4-sulfophenyl)butyrate (3-C4-SPC)] and two minor products, namely, the alpha,beta-unsaturated SPC (SPC-2H, here 3-C4-SPC-2H) and the SPC+2C (here 5-C6-SPC) species (D. Schleheck, T. P. Knepper, K. Fischer, and A. M. Cook, Appl. Environ. Microbiol. 70:4053-4063). The degradation of centrally substituted congeners by strain DS-1 was examined in this work. 5-C10-LAS yielded not only the predicted 4-C8-SPC, 4-C8-SPC-2H, and 6-C10-SPC (about 70% of products) but also sulfophenyl dicarboxylates (SPdC), i.e., C6-, C8-, and C10-SPdC. These were identified by electrospray ionization-mass spectrometry (ESI-MS) after separation by high-pressure liquid chromatography (HPLC). ESI ion-trap MS and ESI-time of flight-MS were used to confirm the identities of key intermediates. Different mixtures of congeners obtained by separation of commercial LAS by HPLC were degraded, and the degradative products were compared. If a congener carried the sulfophenyl substituent on the 5, 6, or 7 position, SPdCs were formed as well as SPC, SPC-2H, and SPC+2C, whereas the substituent on the 2, 3, or 4 position yielded only SPC, SPC-2H, and SPC+2C. Some 50 products were generated from the 20 LAS congeners: 11 major SPCs, each with an SPC-2H and an SPC+2C (i.e., 33 SPC and SPC-2H species), and about 17 SPdC species. A large array of compounds, many in low quantities, is thus generated by P. lavamentivorans DS-1 during the degradation of commercial LAS.
Project description:Arthrobacter chlorophenolicus A6 is a 4-chlorophenol degrading soil bacterium with high phyllosphere colonization capacity. Till now the genetic basis for the phyllosphere competency of Arthrobacter or other pollutant-degrading bacteria is uncertain. We investigated global gene expression profile of A. chlorophenolicus grown in the phyllosphere of common bean (Phaseolus vulgaris) compared to growth on agar surfaces.
Project description:We report the differential expression of a PAH degrading bacterium in different states of substrate induction. Separate substrate cultivation of the same batch of bacterial isolates; total RNA extraction, processing and sequencing; gene expression analysis using bioinformatics softwares and experimental validation using qRT-PCR.