Project description:Abstract: The mitochondrial electron transport chain is essential to Plasmodium and is the target of the antimalarial drug atovaquone. The mitochondrial genomes of Plasmodium sp. are the most reduced known, and the majority of mitochondrial proteins are encoded in the nucleus and imported into the mitochondrion post-translationally. Many organisms have signalling pathways between the mitochondria and the nucleus to regulate the expression of nuclear-encoded mitochondrially-targeted proteins, for example in response to mitochondrial dysfunction. We have studied the gene expression profiles of synchronous Plasmodium falciparum treated with an LD50 concentration of the complex III inhibitor antimycin A, to investigate whether such pathways exist in the parasite. There was a broad perturbation of gene expression. Some effects were attributable to a delay in the gene expression phase of drug-treated parasites. However, our data also indicated regulation of mitochondrial stress response genes and genes involved in pyrimidine biosynthesis.
Project description:Abstract: The mitochondrial electron transport chain is essential to Plasmodium and is the target of the antimalarial drug atovaquone. The mitochondrial genomes of Plasmodium sp. are the most reduced known, and the majority of mitochondrial proteins are encoded in the nucleus and imported into the mitochondrion post-translationally. Many organisms have signalling pathways between the mitochondria and the nucleus to regulate the expression of nuclear-encoded mitochondrially-targeted proteins, for example in response to mitochondrial dysfunction. We have studied the gene expression profiles of synchronous Plasmodium falciparum treated with an LD50 concentration of the complex III inhibitor antimycin A, to investigate whether such pathways exist in the parasite. There was a broad perturbation of gene expression. Some effects were attributable to a delay in the gene expression phase of drug-treated parasites. However, our data also indicated regulation of mitochondrial stress response genes and genes involved in pyrimidine biosynthesis. 3 biological replicates each for treated and untreated: control (1/2000 DMSO) and LD50 antimycin A, respectively. Normalised microarray data for antimycin A-treated parasites were contrasted against untreated (DMSO) controls.