Project description:In order to evaluate the genome differences and find the more tolerant cultivar, first eleven Malaysian rice cultivars namely, MR219, MR276, MR220, MR211, MR219-4, MR253, Q50, Q74, MR159, Masuri and MR263 were subjected under water deficit. Then, based on the morphological and physiological traits, the more drought-tolerant and -susceptible cultivars were screened and time-course gene expression profiling established by a comprehensive transcriptome database sequencing of the leaf RNA of tolerant rice. The current investigation provides pivotal data for understanding the rice drought tolerance mechanisms.
Project description:Heat stress along with other abiotic stresses is one of the major factors affecting crop health and overall yield in a tropical country like India. Thus, there is an urgent need to understand the dynamics of heat responsiveness at the molecular as well as physiological level. Fortunately, India has a number of indigenous varieties that show tolerance to extremes in temperature during the scorching summer months. The cultivar Annapurna is a fast growing dwarf variety of rice that is heat tolerant while the most widely grown indica rice in South and Southeast Asia, IR64, is susceptible to high temperatures. These two cultivars present an excellent opportunity to study the differences in response to heat stress, and, thereby help in elucidating the genes involved in conferring tolerance to high temperature. The present study involves transcript profiling of the two cultivars, Annapurna (tolerant) and IR64 (susceptible) under both control and heat stressed conditions.
Project description:A submergence tolerant indica rice cultivar FR13A, was also reported to withstand salt stress and proven in our experiments. The mechanism of tolerance is yet to be studied by forward genetics approach. However, it is known that salt stress tolerance is governed by several QTLs and not by a single gene. To understand the mechanism of such a complex mechanism of salt tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and salt stress conditions at seedling stage. Experiment Overall Design: We used Agilent rice gene chips (G4138A) to investigate the transcript level changes in rice plant tissues during salt stress treatment. We used two contrasting rice genotypes (FR13A tolerant and IR24 susceptible) differing in salt stress response. Plants were grown in growth chambers and treated with 150 mM salt concentration at 14th DAS. Sampling was done in both constitutive and treated plants at 3 time points. Two replications of microarray experiments were carried out by hybridizing the RNA from tolerant samples against the susceptible lines on the same slide.
Project description:An indica rice cultivar FR13A, is widely grown as submergence tolerant variety and can withstand submergence up to two weeks. The tolerance is governed by a major QTL on chromosome 9 and represented as sub1. Recently the gene for sub1 has been mapped and cloned. However, the trait is governed by several QTLs and not by a single gene. To understand the mechanism of submergence tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and submerged conditions at seedling stage. Keywords: Mechanism of submergence tolerance
Project description:Rice (Oryza sativa), the major staple food crop is being cultivated under varying ecosystems ranging from irrigated lowland to rainfed upland environments. Improvement in the rice production under drought prone unfavourable environment depends on the development of drought tolerant genotypes which needs thorough understanding of physiological and molecular events behind the tolerance mechanism. There is considerable genetic variation for drought tolerance mechanism within the cultivated gene pool. To understand the diversity of drought response, two indica rice genotypes namely, i) Apo, an up-land drought tolerant indica veriety from Philippines and ii) IR64, a popular high yielding drought susceptible genotype were selected for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under control and drought stressed conditions during vegetative phase. Keywords: Drought response
Project description:A submergence tolerant indica rice cultivar FR13A, was also reported to withstand salt stress and proven in our experiments. The mechanism of tolerance is yet to be studied by forward genetics approach. However, it is known that salt stress tolerance is governed by several QTLs and not by a single gene. To understand the mechanism of such a complex mechanism of salt tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and salt stress conditions at seedling stage. Keywords: Mechanism of salt tolerance