ABSTRACT: Chromatin Remodeling Enzyme Smarca5/Snf2h Regulates Cell Cycle Exit, Differentiation of the Lens Epithelium, and Denucleation of Lens Fiber Cells
Project description:This SuperSeries is composed of the following subset Series: GSE22322: Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and their denucleation [lens tissue] GSE25168: Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and their denucleation [eyeball tissue] Refer to individual Series
Project description:Genome-wide approach to identify the cell-autonomous role of Snf2h in lens fiber cell terminal differentiation. Differential gene expression was analyzed in Snf2h lens-conditional knockout and wildtype newborn mouse eyeballs, with subsequent comparison of this data with the Brg1 lens-conditional knockout mouse eyes expression data (GSE25168). Four biological replicate experiments were performed.
Project description:Notch signaling is essential for proper lens development, however the specific requirements of individual Notch receptors has not been previously investigated. Here we report the lens phenotypes of Notch2 conditionally mutant mice, which exhibited severe microphthalmia, reduced pupillary openings, disrupted fiber cell morphology, eventual loss of the anterior epithelium, fiber cell dysgenesis, and cataracts. Notch2 mutants also had a persistent lens stalk phenotype at E11.5, and aberrant DNA synthesis in the fiber cell compartment by E14.5. Gene expression analyses showed elevated levels of the cell cycle regulators Cdkn1a (p21Cip1), Ccnd2 (CyclinD2) and Trp63 (p63) that negatively regulates Wnt signaling. Although removal of Notch2 phenocopied the increased proportion of fiber cells of Rbpj and Jag1 conditional mutant lenses, Notch2 is not required for AEL proliferation, suggesting that a different receptor regulates this process. Instead, we found that the Notch2 normally blocks progenitor cell death. Overall, we conclude that Notch2-mediated signaling regulates lens morphogenesis, apoptosis, cell cycle withdrawal, and secondary fiber cell differentiation. We have compared gene expression of ocular lenses of mice that are lens specific conditional mutants of Notch2 gene to that of littermate controls that had no ablation of Notch2 gene in the lens. Two lenses of each of the three conditional mutants and controls were pooled together and total RNA was harvested from embryonic day 19.5 (E19.5) lenses. Gene expression changes caused by absence of Notch2 gene in the lens were analyzed.
Project description:Genome-wide approach to identify the cell-autonomous role of Snf2h in lens fiber cell terminal differentiation. Differential gene expression was analyzed in Snf2h lens-conditional knockout and wildtype newborn mouse eyeballs, with subsequent comparison of this data with the Brg1 lens-conditional knockout mouse eyes expression data (GSE25168).
Project description:Notch signaling is essential for proper lens development, however the specific requirements of individual Notch receptors has not been previously investigated. Here we report the lens phenotypes of Notch2 conditionally mutant mice, which exhibited severe microphthalmia, reduced pupillary openings, disrupted fiber cell morphology, eventual loss of the anterior epithelium, fiber cell dysgenesis, and cataracts. Notch2 mutants also had a persistent lens stalk phenotype at E11.5, and aberrant DNA synthesis in the fiber cell compartment by E14.5. Gene expression analyses showed elevated levels of the cell cycle regulators Cdkn1a (p21Cip1), Ccnd2 (CyclinD2) and Trp63 (p63) that negatively regulates Wnt signaling. Although removal of Notch2 phenocopied the increased proportion of fiber cells of Rbpj and Jag1 conditional mutant lenses, Notch2 is not required for AEL proliferation, suggesting that a different receptor regulates this process. Instead, we found that the Notch2 normally blocks progenitor cell death. Overall, we conclude that Notch2-mediated signaling regulates lens morphogenesis, apoptosis, cell cycle withdrawal, and secondary fiber cell differentiation.
Project description:Oocytes are indispensable for mammalian life. Thus, it is important to understand how mature oocytes are generated. As a critical stage of oocytes development, meiosis has been extensively studied, yet how chromatin remodeling contributes to this process is largely unknown. Here, we demonstrate that the ATP-dependent chromatin remodeling factor Snf2h (also known as Smarca5) plays a critical role in regulating meiotic cell cycle progression. Females with oocyte-specific depletion of Snf2h are infertile and oocytes lacking Snf2h fail to undergo meiotic resumption. Mechanistically, depletion of Snf2h results in dysregulation of meiosis-related genes, which causes failure of maturation-promoting factor (MPF) activation. ATAC-seq analysis in oocytes revealed that Snf2h regulates transcription of a key meiotic gene, Prkar2b, by increasing its promoter chromatin accessibility. Our studies thus not only demonstrate the importance of Snf2h in oocyte meiotic resumption, but also reveal the mechanism underlying how a chromatin remodeling factor can regulate oocyte meiosis.
Project description:The mature eye lens contains a surface layer of epithelial cells called the lens epithelium that require a functional mitochondrial population to maintain the homeostasis and transparency of the entire lens. The lens epithelium overlies a core of terminally differentiated fiber cells that must degrade their mitochondria to achieve lens transparency. These distinct mitochondrial populations make the lens a useful model system to identify those genes that regulate the balance between mitochondrial homeostasis and elimination. Here we used an RNA sequencing and bioinformatics approach to identify the transcript levels of all genes expressed by distinct regions of the lens epithelium and maturing fiber cells of the embryonic Gallus gallus (chicken) lens. Our analysis detected over 15,000 unique transcripts expressed by the embryonic chicken lens. Of these, over 3000 transcripts exhibited significant differences in expression between lens epithelial cells and fiber cells. Multiple transcripts coding for separate mitochondrial homeostatic and degradation mechanisms were identified to exhibit preferred patterns of expression in lens epithelial cells that require mitochondria relative to lens fiber cells that require mitochondrial elimination. These included differences in the expression levels of metabolic, autophagy, and mitophagy transcripts between lens epithelial cells and lens fiber cells. These data provide a comprehensive window into all genes transcribed by the lens and those mitochondrial regulatory and degradation pathways that function to maintain mitochondrial populations in the lens epithelium and to eliminate mitochondria in maturing lens fiber cells. Differentiation-state transcriptional analysis of embryonic chicken lenses was performed following microdissection of 100 embryonic day 13 (E13) chicken lenses into four distinct regions that represent a continuum of lens cell differentiation states: lens central epithelium (EC), equatorial epithelium (EQ), cortical fibers (FP), and central fibers (FC). Further analysis of the transcriptional content of biologically replicate samples was performed by Illumina directional mRNA sequencing and resulting reads mapped by TopHat and assembled with Cufflinks.
Project description:Epithelial cells and differentiated fiber cells represent distinct compartments in the ocular lens. While previous studies have revealed proteins that are preferentially expressed in epithelial vs. fiber cells, a comprehensive proteomics library comparing the molecular composition of epithelial vs. fiber cells is essential for understanding lens formation, function, disease and regenerative potential, and for efficient differentiation of pluripotent stem cells for modeling of lens development and pathology in vitro. To compare protein composition between the lens epithelium and fibers, we employed tandem mass spectrometry (2DLC/ MS) analysis of micro-dissected mouse P0.5 lenses. Functional classifications of the top 525 identified proteins into gene ontology categories by molecular process and subcellular localization, were adapted for lens. Expression levels of both epithelial and fiber proteomes were compared with their temporal and spatial mRNA levels using E14.5, E16.5, E18.5, and P0.5 RNA-Seq data sets. During this developmental time window, multiple complex biosynthetic and catabolic processes generate the molecular and structural foundation for lens transparency. As expected, crystallins showed a high correlation between their mRNA and protein levels. Comprehensive data analysis confirmed and/or predicted roles for transcription factors (TFs), RNA-binding proteins, translational apparatus including ribosomal heterogeneity and initiation factors, microtubules, cytoskeletal and membrane proteins in lens formation and maturation. Our data highlighted many proteins with unknown function in the lens that were preferentially enriched in epithelium or fibers, setting the stage for future studies to further dissect the roles of these proteins in fiber cell differentiation vs. epithelial cell maintenance. In conclusion, the present proteomic datasets established reference mouse lens epithelium and fiber cell proteomes, provided quantitative analyses of protein and RNA-Seq data, and probed the major proteome remodeling required to form the mature lens fiber cells.
Project description:The mature eye lens contains a surface layer of epithelial cells called the lens epithelium that require a functional mitochondrial population to maintain the homeostasis and transparency of the entire lens. The lens epithelium overlies a core of terminally differentiated fiber cells that must degrade their mitochondria to achieve lens transparency. These distinct mitochondrial populations make the lens a useful model system to identify those genes that regulate the balance between mitochondrial homeostasis and elimination. Here we used an RNA sequencing and bioinformatics approach to identify the transcript levels of all genes expressed by distinct regions of the lens epithelium and maturing fiber cells of the embryonic Gallus gallus (chicken) lens. Our analysis detected over 15,000 unique transcripts expressed by the embryonic chicken lens. Of these, over 3000 transcripts exhibited significant differences in expression between lens epithelial cells and fiber cells. Multiple transcripts coding for separate mitochondrial homeostatic and degradation mechanisms were identified to exhibit preferred patterns of expression in lens epithelial cells that require mitochondria relative to lens fiber cells that require mitochondrial elimination. These included differences in the expression levels of metabolic, autophagy, and mitophagy transcripts between lens epithelial cells and lens fiber cells. These data provide a comprehensive window into all genes transcribed by the lens and those mitochondrial regulatory and degradation pathways that function to maintain mitochondrial populations in the lens epithelium and to eliminate mitochondria in maturing lens fiber cells.