Project description:The goals of this study were to identify the Efg1p-regulon during GI tract colonization and to compare C. albicans gene expression during colonization of different organs of the GI tract. Our results identified significant differences in gene expression between cells colonizing the cecum and ileum. In addition, during laboratory growth, efg1- null mutant cells grew to a higher density than WT cells. The efg1- null mutant grew in depleted medium, while WT cells could only grow if the depleted medium was supplemented with carnitine, a compound that promotes the metabolism of fatty acids. During colonization, efg1- null mutant cells expressed higher levels of genes involved in lipid catabolism, carnitine biosynthesis and carnitine utilization in comparison to colonizing WT cells. This altered gene expression supports the ability of efg1- cells to hypercolonize naïve mice. C. albicans cells (WT, efg1-, efg1- efh1- or efg1- cph1-) were inoculated into antibiotic-treated BALB/c mice by oral gavage. Contents of the cecum and ileum were collected and frozen in RNALater. Reference cells (WT C. albicans) were grown in YPD medium at 37oC to exponential phase. Total RNA was extracted from both all samples. Sample of C. albicans isolated from GI tract organs was compared to reference on microarray. Between 4 and 7 microarray hybridizations, with dye swaps, were performed for each sample.
Project description:The goals of this study were to identify the Efg1p-regulon during GI tract colonization and to compare C. albicans gene expression during colonization of different organs of the GI tract. Our results identified significant differences in gene expression between cells colonizing the cecum and ileum. In addition, during laboratory growth, efg1- null mutant cells grew to a higher density than WT cells. The efg1- null mutant grew in depleted medium, while WT cells could only grow if the depleted medium was supplemented with carnitine, a compound that promotes the metabolism of fatty acids. During colonization, efg1- null mutant cells expressed higher levels of genes involved in lipid catabolism, carnitine biosynthesis and carnitine utilization in comparison to colonizing WT cells. This altered gene expression supports the ability of efg1- cells to hypercolonize naïve mice.
Project description:Candida albicans is associated with humans as both a harmless commensal organism and a pathogen. Cph2 is a transcription factor whose DNA binding domain is similar to mammalian sterol response element binding proteins (SREBPs). SREBPs are master regulators of cellular cholesterol levels, and are highly conserved from fungi to mammals. However, ergosterol biosynthesis is regulated by the zinc finger transcription factor Upc2 in C. albicans and several other yeasts. Cph2 is not necessary for ergosterol biosynthesis, but important for colonization in the murine gastrointestinal tract. Here we demonstrate that Cph2 is a membrane-associated transcription factor that is processed to release the N-terminal DNA binding domain like SREBPs; but its cleavage is not regulated by cellular levels of ergosterol or oxygen. ChIP-Seq shows that Cph2 binds to the promoters of HMS1 and other components of the regulatory circuit for GI tract colonization. In addition, 50% of Cph2 targets are also bound by Hms1 and other factors of the regulatory circuit. Several common targets function at the head of the glycolysis pathway. Thus, Cph2 is an integral part of the regulatory circuit for GI colonization that regulates glycolytic flux. RNA-seq shows a significant overlap in genes differentially regulated by Cph2 and hypoxia, and Cph2 is important for optimal expression of some hypoxia-responsive genes in glycolysis and the citric acid cycle. We suggest that Cph2 and Upc2 regulate hypoxia-responsive expression in different pathways, consistent with a synthetic lethal defect of the cph2 upc2 double mutant in hypoxia. Genome binding/occupancy profiling by high throughput sequencing. ChIP-seq of Cph2 was carried out in a wild-type strain carrying N-terminal myc-tagged Cph2 under the MAL2 promoter (MAL2-myc-Cph2N). IP and INPUT samples from 2 independent experiments, as well as a sample of untagged wild-type control, were sequenced.
Project description:Candida albicans is associated with humans as both a harmless commensal organism and a pathogen. Cph2 is a transcription factor whose DNA binding domain is similar to mammalian sterol response element binding proteins (SREBPs). SREBPs are master regulators of cellular cholesterol levels, and are highly conserved from fungi to mammals. However, ergosterol biosynthesis is regulated by the zinc finger transcription factor Upc2 in C. albicans and several other yeasts. Cph2 is not necessary for ergosterol biosynthesis, but important for colonization in the murine gastrointestinal tract. Here we demonstrate that Cph2 is a membrane-associated transcription factor that is processed to release the N-terminal DNA binding domain like SREBPs; but its cleavage is not regulated by cellular levels of ergosterol or oxygen. ChIP-Seq shows that Cph2 binds to the promoters of HMS1 and other components of the regulatory circuit for GI tract colonization. In addition, 50% of Cph2 targets are also bound by Hms1 and other factors of the regulatory circuit. Several common targets function at the head of the glycolysis pathway. Thus, Cph2 is an integral part of the regulatory circuit for GI colonization that regulates glycolytic flux. RNA-seq shows a significant overlap in genes differentially regulated by Cph2 and hypoxia, and Cph2 is important for optimal expression of some hypoxia-responsive genes in glycolysis and the citric acid cycle. We suggest that Cph2 and Upc2 regulate hypoxia-responsive expression in different pathways, consistent with a synthetic lethal defect of the cph2 upc2 double mutant in hypoxia.
Project description:Candida albicans is associated with humans as both a harmless commensal organism and a pathogen. Cph2 is a transcription factor whose DNA binding domain is similar to mammalian sterol response element binding proteins (SREBPs). SREBPs are master regulators of cellular cholesterol levels, and are highly conserved from fungi to mammals. However, ergosterol biosynthesis is regulated by the zinc finger transcription factor Upc2 in C. albicans and several other yeasts. Cph2 is not necessary for ergosterol biosynthesis, but important for colonization in the murine gastrointestinal tract. Here we demonstrate that Cph2 is a membrane-associated transcription factor that is processed to release the N-terminal DNA binding domain like SREBPs; but its cleavage is not regulated by cellular levels of ergosterol or oxygen. ChIP-Seq shows that Cph2 binds to the promoters of HMS1 and other components of the regulatory circuit for GI tract colonization. In addition, 50% of Cph2 targets are also bound by Hms1 and other factors of the regulatory circuit. Several common targets function at the head of the glycolysis pathway. Thus, Cph2 is an integral part of the regulatory circuit for GI colonization that regulates glycolytic flux. RNA-seq shows a significant overlap in genes differentially regulated by Cph2 and hypoxia, and Cph2 is important for optimal expression of some hypoxia-responsive genes in glycolysis and the citric acid cycle. We suggest that Cph2 and Upc2 regulate hypoxia-responsive expression in different pathways, consistent with a synthetic lethal defect of the cph2 upc2 double mutant in hypoxia.
Project description:Candida albicans is associated with humans as both a harmless commensal organism and a pathogen. Cph2 is a transcription factor whose DNA binding domain is similar to mammalian sterol response element binding proteins (SREBPs). SREBPs are master regulators of cellular cholesterol levels, and are highly conserved from fungi to mammals. However, ergosterol biosynthesis is regulated by the zinc finger transcription factor Upc2 in C. albicans and several other yeasts. Cph2 is not necessary for ergosterol biosynthesis, but important for colonization in the murine gastrointestinal tract. Here we demonstrate that Cph2 is a membrane-associated transcription factor that is processed to release the N-terminal DNA binding domain like SREBPs; but its cleavage is not regulated by cellular levels of ergosterol or oxygen. ChIP-Seq shows that Cph2 binds to the promoters of HMS1 and other components of the regulatory circuit for GI tract colonization. In addition, 50% of Cph2 targets are also bound by Hms1 and other factors of the regulatory circuit. Several common targets function at the head of the glycolysis pathway. Thus, Cph2 is an integral part of the regulatory circuit for GI colonization that regulates glycolytic flux. RNA-seq shows a significant overlap in genes differentially regulated by Cph2 and hypoxia, and Cph2 is important for optimal expression of some hypoxia-responsive genes in glycolysis and the citric acid cycle. We suggest that Cph2 and Upc2 regulate hypoxia-responsive expression in different pathways, consistent with a synthetic lethal defect of the cph2 upc2 double mutant in hypoxia. Expression profiling by high throughput sequencing. RNA sequencing was performed on wild type and cph2 deletion strains. 2 biological replicates were sequenced for each strain.
Project description:Candida albicans is a central fungal component of the human gut microbiota and an opportunistic pathogen. Two C. albicans transcription factors, Wor1 and Efg1, control its ability to colonize the mammalian gut. They are also master regulators of an epigenetic switch required for mating. The mammalian gastrointestinal tract is a complex environment difficult to model in vitro. In C. albicans, it is known that environmental signals can dictate the binding targets of these transcription factors. To study the regulation of transcription factors of C. albicans in the GI tract, a Calling card-seq approach was adopted. This technique allowed us to directly record transcription factor binding that occurred in the mammalian gut.
Project description:Single-celled organisms have different strategies to sense and utilize nutrients in their ever-changing environments. The opportunistic fungal pathogen Candida albicans is a common member of the human microbiota, especially that of the gastrointestinal (GI) tract. An important question concerns how C. albicans gained a competitive advantage over other microbes to become a successful commensal and opportunistic pathogen. Here, we report that C. albicans uses N-acetylglucosamine (GlcNAc), an abundant carbon source present in the GI tract, as a signal for nutrient availability. When placed in water, C. albicans cells normally enter the G0 phase and remain viable for weeks. However, they quickly lose viability when cultured in water containing only GlcNAc. We term this phenomenon GlcNAc-induced cell death (GICD). GlcNAc triggers the upregulation of ribosomalbiogenesis genes, alterations of mitochondrial metabolism, and the accumulation of reactive oxygen species (ROS), followed by rapid cell death via both apoptotic and necrotic mechanisms. Multiple pathways, including the conserved cyclic AMP (cAMP) signaling and GlcNAc catabolic pathways, are involved in GICD. GlcNAc acts as a signaling molecule to regulate multiple cellular programs in a coordinated manner and therefore maximizes the efficiency of nutrient use. This adaptive behavior allows C. albicans’ more efficient colonization of the gut.
Project description:Single-celled organisms have different strategies to sense and utilize nutrients in their ever-changing environments. The opportunistic fungal pathogen Candida albicans is a common member of the human microbiota, especially that of the gastrointestinal (GI) tract. An important question concerns how C. albicans gained a competitive advantage over other microbes to become a successful commensal and opportunistic pathogen. Here, we report that C. albicans uses N-acetylglucosamine (GlcNAc), an abundant carbon source present in the GI tract, as a signal for nutrient availability. When placed in water, C. albicans cells normally enter the G0 phase and remain viable for weeks. However, they quickly lose viability when cultured in water containing only GlcNAc. We term this phenomenon GlcNAc-induced cell death (GICD). GlcNAc triggers the upregulation of ribosomalbiogenesis genes, alterations of mitochondrial metabolism, and the accumulation of reactive oxygen species (ROS), followed by rapid cell death via both apoptotic and necrotic mechanisms. Multiple pathways, including the conserved cyclic AMP (cAMP) signaling and GlcNAc catabolic pathways, are involved in GICD. GlcNAc acts as a signaling molecule to regulate multiple cellular programs in a coordinated manner and therefore maximizes the efficiency of nutrient use. This adaptive behavior allows C. albicans’ more efficient colonization of the gut. Expression profiles of Candida alibcans in three different 5 hours) were determined by high throughput sequencing technology.
Project description:Candida albicans is the most common opportunistic fungal pathogen of humans and is also a benign member of the gastrointestinal (GI) tract microbiota. Morphological transitions and metabolic regulation are critical for C. albicans to adapt to the changing host environment. We generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. ablicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. Through integrations with the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and filamentation. The TCA cycle and cAMP signaling pathways form a regulatory feedback loop, in which ATP and CO2 may function as molecular linkers. We further demonstrate that inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and filamentation-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Finally, we also demonstrate that several key genes of the TCA cycle are essential for virulence and successful colonization of the GI tract in two mouse infection models.