Project description:LRF, which is encoded by the ZBTB7A gene and formerly known as POKEMON (POK erythroid myeloid ontogenic factor), was originally identified as a PLZF (promyelocytic leukemia zinc finger) homologue interacting with BCL6 (B-cell lymphoma 6). LRF is a transcription factor that is broadly expressed in hematopoietic lineage cells, but its expression is particularly high in erythroblasts and germinal center (GC) B-cells. The goal of this study is to assess the effect of LRF loss on the LT-HSC transcriptome. Nine days after injection of adult mice with polyinosinic polycytidylic acid (pIpc) to activate Cre, total RNAs were isolated from double-sorted LT-HSCs from LRF Flox/+ Mx1-Cre+ and LRF Flox/Flox Mx1-Cre+ mice and processed for microarray analysis. We performed gene expression microarray analysis of FACS-sorted LT-HSCs (LSK IL7Ra-Flt3-CD150+CD48-) to assess the effect of Lrf loss on the LT-HSC transcriptome. Zbtb7a Flox/+ Mx1-Cre+ mice were used as a control to normalize the potential effects of Cre recombinase. LT-HSCs were FACS-sorted from three Lrf knockout (Zbtb7a Flox/Flox Mx1-Cre+) and two control (Zbtb7a Flox/+ Mx1-Cre+) mice, nine days after the first pIpC injection.
Project description:LRF, which is encoded by the ZBTB7A gene and formerly known as POKEMON (POK erythroid myeloid ontogenic factor), was originally identified as a PLZF (promyelocytic leukemia zinc finger) homologue interacting with BCL6 (B-cell lymphoma 6). LRF is a transcription factor that is broadly expressed in hematopoietic lineage cells, but its expression is particularly high in erythroblasts and germinal center (GC) B-cells. The goal of this study is to assess the effect of LRF loss on the LT-HSC transcriptome. Nine days after injection of adult mice with polyinosinic polycytidylic acid (pIpc) to activate Cre, total RNAs were isolated from double-sorted LT-HSCs from LRF Flox/+ Mx1-Cre+ and LRF Flox/Flox Mx1-Cre+ mice and processed for microarray analysis.
Project description:To address the impact of cellular origin on AML, we generated an inducible transgenic mouse model for MLL-AF9 driven leukemia. MLL-AF9 expression in long-term hematopoietic stem cells (LT-HSCs) in vitro resulted in unprecedented clonogenic growth and expression of genes involved in migration and invasion. In vivo, some LT-HSC-derived AMLs were particularly aggressive with extensive tissue infiltration, chemo-resistance and expression of genes related to epithelial-mesenchymal transition (EMT) in solid cancers. Knockdown of the EMT regulators Zeb1 and Tcf4 significantly reduced leukemic blast invasion. By classifying mouse and human leukemia according to Evi1/EVI1and Erg/ERG expression, reflecting aggressiveness and cell-of-origin and performing comparative transcriptomics we identified numerous EMT-related genes that were significantly associated with poor overall survival of AML patients. RNA from primary cells as well as doxycyclin treated cells from immortalized LT-HSC and GMP (Granulocyte macrophage progenitor) celllines was isolated for expression profiling on Affymetrix gene arrays.
Project description:Hematopoietic stem cells (HSCs) self-renew and generate all blood cells. Recent studies with single-cell transplants and lineage tracing suggest that adult HSCs are diverse in their reconstitution and lineage potentials. However, prospective isolation of these subpopulations has remained challenging. Here, we identify Neogenin-1 (NEO1) as a unique surface marker on a fraction of mouse HSCs labeled with Hoxb5, a specific reporter of long-term HSCs (LT-HSCs). We show that NEO1+Hoxb5+ LT-HSCs expand with age and respond to myeloablative stress in young mice, while NEO1–Hoxb5+ LT-HSCs exhibit no significant change in number. Furthermore, NEO1+Hoxb5+ LT-HSCs are more often in the G2/S cell cycle phase compared to NEO1–Hoxb5+ LT-HSCs in both young and old bone marrow. Upon serial transplantation, NEO1+Hoxb5+ LT-HSCs exhibit myeloid-biased differentiation and reduced reconstitution, while NEO1–Hoxb5+ LT-HSCs are lineage-balanced and stably reconstitute recipients. Gene expression analysis reveals erythroid and myeloid priming in the NEO1+ fraction and association of quiescence and self-renewal-related transcription factors with NEO1− LT-HSCs. Finally, transplanted NEO1+Hoxb5+ LT-HSCs rarely generate NEO1–Hoxb5+ LT-HSCs, while NEO1–Hoxb5+ LT-HSCs repopulate both LT-HSC fractions. This supports a model in which dormant, balanced, NEO1–Hoxb5+ LT-HSCs can hierarchically precede active, myeloid-biased NEO1+Hoxb5+ LT-HSCs.
Project description:Purpose: The goal of this study is to compare NGS-derived transcriptome profiling (RNA-seq) of Ltbr-deficient and -proficient LT/ST-HSCs isolated from chimeric mice. Methods: Transcriptomic profiles of Ltbr-/- and Ly5.1 LT/ST-HSCs isolated from chimeric mice 6 weeks after reconstitution were assessed in triplicate by deep sequencing, using Illumina NextSeq 500. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Results: We mapped about 60 million sequence reads per sample to the mouse genome (GRCm38 - mm10) and identified expressed transcripts in Ltbr-/- and Ly5.1 LT/ST-HSCs isolated from chimeric mice. RNA-seq. data confirmed stable expression of known housekeeping genes. Differentially expressed genes between the Ltbr-/- and Ly5.1 LT/ST-HSCs were identified with a fold change ≥1.5 and FDR p-value <0.05. Conclusions: Our study represents the first detailed transcriptome analysis of Ltbr-deficient and -proficient LT/ST-HSCs, with biologic replicates, generated by RNA-seq. technology. Our results show that Ltbr signaling regulates HSC proliferation and differentiation. Evaluation of mRNA content in Ltbr-/- LT/ST-HSCs revealed that Ltbr-deficiency enhances HSC proliferation, differentiation, cell cycle and reduces the activity of canonical NFkB signaling.
Project description:To address the impact of cellular origin on AML, we generated an inducible transgenic mouse model for MLL-AF9 driven leukemia. MLL-AF9 expression in long-term hematopoietic stem cells (LT-HSCs) in vitro resulted in unprecedented clonogenic growth and expression of genes involved in migration and invasion. In vivo, some LT-HSC-derived AMLs were particularly aggressive with extensive tissue infiltration, chemo-resistance and expression of genes related to epithelial-mesenchymal transition (EMT) in solid cancers. Knockdown of the EMT regulators Zeb1 and Tcf4 significantly reduced leukemic blast invasion. By classifying mouse and human leukemia according to Evi1/EVI1and Erg/ERG expression, reflecting aggressiveness and cell-of-origin and performing comparative transcriptomics we identified numerous EMT-related genes that were significantly associated with poor overall survival of AML patients. RNA from FACS sorted bone marrow subpopulations was isolated, RNA-sequencing libraries were prepared and sequenced on an Illumina HiSeq 2000. Reads mapping to RefSeq transcripts were counted.
Project description:The fate options of hematopoietic stem cells (HSCs) include self-renewal, differentiation, migration and apoptosis, but the interaction between intracellular Ca2+ and cytoplasmic chaperon protein in regulating fate options of long term-HSCs (LT-HSC) is unknown. We created a S100A6 conditional knockout mouse model in the hematopoietic system and our studies showed that in S100A6KO, the number of LT-HSCs was significantly reduced and HSCs engrafted poorly. After 5FU challenge, the frequency of S100A6KO HSCs remained significantly low. Our data showed that S100A6 failed to self-renew through Akt pathway in an intracellular calcium (Cai2+)-dependent manner. Expression profiling of S100A6KO obtained from gene signatures revealed that cytosolic calcium level and proteins translocation to mitochondria were decreased. Mitochondrial oxidative phosphorylation was impaired in S100A6KO. Proteomic data indicated Hsp90 protein and chaperonin family were reduced. Our findings demonstrated that S100A6 regulates fate options of HSCs self-renewal through integrating Akt signaling, specifically governing mitochondria metabolic function and protein quality.
Project description:To address the impact of cellular origin on AML, we generated an inducible transgenic mouse model for MLL-AF9 driven leukemia. MLL-AF9 expression in long-term hematopoietic stem cells (LT-HSCs) in vitro resulted in unprecedented clonogenic growth and expression of genes involved in migration and invasion. In vivo, some LT-HSC-derived AMLs were particularly aggressive with extensive tissue infiltration, chemo-resistance and expression of genes related to epithelial-mesenchymal transition (EMT) in solid cancers. Knockdown of the EMT regulators Zeb1 and Tcf4 significantly reduced leukemic blast invasion. By classifying mouse and human leukemia according to Evi1/EVI1and Erg/ERG expression, reflecting aggressiveness and cell-of-origin and performing comparative transcriptomics we identified numerous EMT-related genes that were significantly associated with poor overall survival of AML patients.
Project description:To address the impact of cellular origin on AML, we generated an inducible transgenic mouse model for MLL-AF9 driven leukemia. MLL-AF9 expression in long-term hematopoietic stem cells (LT-HSCs) in vitro resulted in unprecedented clonogenic growth and expression of genes involved in migration and invasion. In vivo, some LT-HSC-derived AMLs were particularly aggressive with extensive tissue infiltration, chemo-resistance and expression of genes related to epithelial-mesenchymal transition (EMT) in solid cancers. Knockdown of the EMT regulators Zeb1 and Tcf4 significantly reduced leukemic blast invasion. By classifying mouse and human leukemia according to Evi1/EVI1and Erg/ERG expression, reflecting aggressiveness and cell-of-origin and performing comparative transcriptomics we identified numerous EMT-related genes that were significantly associated with poor overall survival of AML patients.