Project description:Hepatic encephalopathy (HE) is a frequent complication of liver cirrhosis and is seen as the clinical manifestation of a low grade cerebral edema associated with oxidative-nitrosative stress, however, comprehensive data on HE-associated molecular derangements in human brain are lacking. In the present study we used a whole human genome micro-array approach for gene expression profiling in post mortem brain samples from cirrhotic patients with or without HE and non-cirrhotic controls. Altered expression levels were found for a total of 1012 genes in liver cirrhotic patients without and with HE and HE-characteristic gene expression changes were identified. Genes with altered expression pattern in HE were related oxidative stress, microglia activation, inflammatory signalling pathways, cellular proliferation and apoptosis. Despite an up-regulation of genes associated with microglia activation, pro-inflammatory cytokine mRNA profiles remained unchanged in the brain of patients with liver cirrhosis and HE as compared to controls. Interestingly, many genes counteracting pro-inflammatory signalling and inflammatory cytokine expression were up-regulated in the cerebral cortex of patients with liver cirrhosis and HE. It is concluded that pathogenetic mechanisms of HE deduced from cell culture and animal experiments, such as oxidative stress, altered Zn2+-homeostasis and microglia activation also apply to human brain from cirrhotic patients with HE. The study also revealed a not yet recognized increased expression of genes antagonizing pro-inflammatory signalling and inflammatory cytokine expression. The dataset comprises 19 samples divided into three sample groups each representing a certain liver disease condition of humans.
Project description:Hepatic encephalopathy (HE) is a frequent complication of liver cirrhosis and is seen as the clinical manifestation of a low grade cerebral edema associated with oxidative-nitrosative stress, however, comprehensive data on HE-associated molecular derangements in human brain are lacking. In the present study we used a whole human genome micro-array approach for gene expression profiling in post mortem brain samples from cirrhotic patients with or without HE and non-cirrhotic controls. Altered expression levels were found for a total of 1012 genes in liver cirrhotic patients without and with HE and HE-characteristic gene expression changes were identified. Genes with altered expression pattern in HE were related oxidative stress, microglia activation, inflammatory signalling pathways, cellular proliferation and apoptosis. Despite an up-regulation of genes associated with microglia activation, pro-inflammatory cytokine mRNA profiles remained unchanged in the brain of patients with liver cirrhosis and HE as compared to controls. Interestingly, many genes counteracting pro-inflammatory signalling and inflammatory cytokine expression were up-regulated in the cerebral cortex of patients with liver cirrhosis and HE. It is concluded that pathogenetic mechanisms of HE deduced from cell culture and animal experiments, such as oxidative stress, altered Zn2+-homeostasis and microglia activation also apply to human brain from cirrhotic patients with HE. The study also revealed a not yet recognized increased expression of genes antagonizing pro-inflammatory signalling and inflammatory cytokine expression.
Project description:Patients with liver cirrhosis may have minimal hepatic encephalopathy (MHE) with cognitive and motor impairments that reduce life quality and span. MHE onset is associated with a shift in peripheral inflammation in which CD4+ lymphocytes play a key role but the underlying mechanisms remain unclear. We aimed to identify in CD4+ lymphocytes from patients with and without MHE: (1) gene expression changes and associated biological pathways using RNA-seq; (2) alterations in miRNA levels using miRNA-seq; (3) miRNAs and transcription factors regulating key mRNAs and (4) signalling pathways contributing to the peripheral inflammation shift associated to MHE onset. Additionally, we recovered T-cell receptor (TCR) repertoires from RNA-seq dataset to understand the immune status of control patients and cirrhotic patients with or without MHE.
Project description:This experiment contains the subset of data corresponding to human RNA-Seq data from experiment E-GEOD-30352 (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-30352/), which goal is to understand the dynamics of mammalian transcriptome evolution. To study mammalian transcriptome evolution at high resolution, we generated RNA-Seq data (∼3.2 billion Illumina Genome Analyser IIx reads of 76 base pairs) for the polyadenylated RNA fraction of brain (cerebral cortex or whole brain without cerebellum), cerebellum, heart, kidney, liver and testis (usually from one male and one female per somatic tissue and two males for testis) from nine mammalian species: placental mammals (great apes, including humans; rhesus macaque; mouse), marsupials (gray short-tailed opossum) and monotremes (platypus). Corresponding data (∼0.3 billion reads) were generated for a bird (red jungle fowl, a non-domesticated chicken) and used as an evolutionary outgroup.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Cirrhosis, advanced liver disease, affects 2-5 million Americans. While most patients have compensated cirrhosis and may be fairly asymptomatic, many decompensate and experience life-threatening complications such as gastrointestinal bleeding, confusion (hepatic encephalopathy), and ascites, reducing life expectancy from 12 to less than 2 years. Among the patients with compensated cirrhosis, identifying patients at high risk of decompensation is critical to optimize care, reduce morbidity and mortality. This is important to preferentially direct them towards specialty care which cannot be provided to all patients with cirrhosis. We used discovery Top-down Proteomics (TDP) to detect differentially expressed proteoforms (DEPs) in the plasma of patients with cirrhosis with the goal to identify candidate biomarkers of disease progression. 663 DEPs were identified across three stages of cirrhosis (compensated, compensated with portal hypertension, and decompensated), of which 115 derived from proteins enriched in the liver at a transcriptional level and discriminated the progressive stages of cirrhosis. Enrichment analyses demonstrated DEPs are involved in numerous metabolic, oxidative, immunological, and hematological processes known to be impacted by cirrhosis progression. We have preliminarily defined the plasma proteoform signatures of cirrhosis patients, setting the stage for ongoing discovery and validation of biomarkers for early diagnosis, risk stratification, and disease monitoring.
Project description:Chronic alcohol consumption can lead to alchohol-related brain damage (ARBD). Despite the well known acute effects of alcohol the mechanism responsible for chronic brain damage is largely unknown. Pathologically the major change is the loss of white matter while neuronal loss is mild and restricted to a few areas such as the prefrontal cortex. In order to improve our understanding of ARBD pathogenesis we used microarrays to explore the white matter transcriptome of alcoholics and controls. Our results suggest that hepatic encephalopathy, along with two confounders, gray matter contamination and low RNA quality, are major drivers of gene expression in ARBD. All three exceeded the effects of alcohol itself. In particular, low quality RNA samples were characterized by an upregulation of protein translation machinery while hepatic encephalopathy was associated with a downregulation of mitochondrial energy metabolism pathways. The findings in HE alcoholics are consistent with the metabolic acidosis seen in this condition. In contrast non-HE alcoholics had widespread but only subtle changes in gene expression in their white matter. The initial cohort was compromised of four alcoholics without hepatic encephalopathy (non-HE alcoholics), three alcoholics with HE (HE alcoholics) and three neurologically normal controls. For each indvidual frozen white matter was sampled in the superior frontal gyrus (prefrontal cortex) and the precentral gyrus (motor cortex). These two cortices experience either moderate (prefrontal cortex) or no neuronal loss (motor cortex) with alcohol-related brain damage. Each white matter sample was divided in two before RNA was extracted to give two 'biological' repeats and a total of 40 samples. Subsequently eight duplicates were removed due to their gray matter contamination or low RNA quality to leave a 32-sample cohort (23 alcoholic (including eight with HE ) and nine control samples.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.