Project description:Analysis of purified immune and breast tumor cells from three major compartments where cancer and immune cells interact: primary tumor, tumor draining lymph nodes (tumor invaded or tumor free), and peripheral blood. The results suggests that node-positive patients’ immune regulation and functionality is down-regulated compared to node-negative patients.
Project description:Analysis of purified immune and breast tumor cells from three major compartments where cancer and immune cells interact: primary tumor, tumor draining lymph nodes (tumor invaded or tumor free), and peripheral blood. The results suggests that node-positive patients’ immune regulation and functionality is down-regulated compared to node-negative patients. CD45+ Immune and ESA+ tumor cells were purified from breast cancer patients' primary tumor, tumor-draining lymph node, and peripheral blood (ficoll) and placed onto Agilent microarrays using the dye-swap method. A universal human reference was used as a reference for the patient samples.
Project description:Lymph node involvement is a major prognostic variable in breast cancer. Whether the molecular mechanisms that drive breast cancer cells to colonize lymph nodes are shared with their capacity to form distant metastases is yet to be established. In a transcriptomic survey aimed at identifying molecular factors associated with lymph node involvement of ductal breast cancer, we found that luminal differentiation, assessed by the expression of estrogen receptor (ER) and/or progesterone receptor (PR) and GATA3, was only infrequently lost in node-positive primary tumors and in matched lymph node metastases. The transcription factor GATA3 critically determines luminal lineage specification of mammary epithelium and is widely considered a tumor and metastasis suppressor in breast cancer. Strong expression of GATA3 and ER in a majority of primary node-positive ductal breast cancer was corroborated by quantitative RT-PCR and immunohistochemistry in the initial sample set, and by immunohistochemistry in an additional set from 167 patients diagnosed of node-negative and positive primary infiltrating ductal breast cancer, including 102 samples from loco-regional lymph node metastases matched to their primary tumors, as well as 37 distant metastases. These observations suggest that loss of luminal differentiation is not a major factor driving the ability of breast cancer cells to colonize regional lymph nodes. The transcriptomic study comprises 16 samples from Lymph node metastasis from infiltrating ductal breast carcinoma, 18 samples from Primary node-positive infiltrating ductal,7 samples from Primary node-negative infiltrating ductal and 3 samples from Unaffected lymph node were included. Their RNA was isolated and prepared for hybridization to human Affymetrix GeneChip arrays.
Project description:To obtain more information about the lymph node metastasis of breast cancer cells, we selected the matched primary breast cancer (PC), positive lymph nodes (PL), and negative lymph nodes (NL) of the same patient to perform integrated analysis. The PC, PL, NL samples were analysed with single-cell RNA sequencing.
Project description: Lymph node involvement is a major prognostic variable in breast cancer. Whether the molecular mechanisms that drive breast cancer cells to colonize lymph nodes are shared with their capacity to form distant metastases is yet to be established. In a transcriptomic survey aimed at identifying molecular factors associated with lymph node involvement of ductal breast cancer, we found that luminal differentiation, assessed by the expression of estrogen receptor (ER) and/or progesterone receptor (PR) and GATA3, was only infrequently lost in node-positive primary tumors and in matched lymph node metastases. The transcription factor GATA3 critically determines luminal lineage specification of mammary epithelium and is widely considered a tumor and metastasis suppressor in breast cancer. Strong expression of GATA3 and ER in a majority of primary node-positive ductal breast cancer was corroborated by quantitative RT-PCR and immunohistochemistry in the initial sample set, and by immunohistochemistry in an additional set from 167 patients diagnosed of node-negative and –positive primary infiltrating ductal breast cancer, including 102 samples from loco-regional lymph node metastases matched to their primary tumors, as well as 37 distant metastases. These observations suggest that loss of luminal differentiation is not a major factor driving the ability of breast cancer cells to colonize regional lymph nodes.
Project description:We performed an expression profiling study of 168 primary breast tumors, lymph node metastases, and autopsy samples of primary breast tumours and metastases to liver, chest wall, lymph node, lung, and spleen, as well as positive and negative RNA controls, with technical replicates, to assess quality control methodology and probe-level reproducibility of the Illumina DASL microarray assay. The experiment included both Illumina DASL HumanRef-v3 and DASL HT-12; this series includes only the 48 HT12 samples . This series includes 48 samples in total: 9 positive controls, 4 negative controls, and 35 primary breast tumors and metastatic lymph nodes.
Project description:We performed an expression profiling study of 168 primary breast tumors, lymph node metastases, and autopsy samples of primary breast tumours and metastases to liver, chest wall, lymph node, lung, and spleen, as well as positive and negative RNA controls, with technical replicates, to assess quality control methodology and probe-level reproducibility of the Illumina DASL microarray assay. The experiment included both Illumina DASL HumanRef-v3 and DASL HT-12; this series includes only the 120 HumanRef-v3 samples . This series includes 120 samples in total: 19 autopsy tissues of the chest wall, liver, lymph nodes, lung, spleen, liver, and breast, 5 negative controls, 6 positive controls, and 90 lymph node metastases.
Project description:To elucidate effects of tumor host interactions in vivo in CLL, purified tumor cells were obtained concurrently from blood, bone marrow and/or lymph node and analyzed by gene expression profiling. Keywords: RNA Comparision of gene expression profiling in matched pairs of peripheral blood (PB) vs. bone marrow (BM) or lymph nodes (LN) derived CLL cells
Project description:Metastasis to lymph nodes is an early and prognostically important event in the progression of many human cancers, and is associated with expression of vascular endothelial growth factor-D (VEGF-D). Changes to lymph node vasculature occur during metastasis, and may establish a metastatic niche capable of attracting and supporting tumor cells. We used microarrays to characterise the molecular profiles of endothelial cells from lymph nodes draining metastatic (VEGF-D-overexpressing) and non-metastatic tumors, and to identify differentially-expressed genes that might have therapeutic or prognostic potential. Draining lymph nodes of metastatic (VEGF-D-overexpressing) or non-metastatic tumors were pooled from 1-5 mice and enzymatically digested. Lymph nodes draining metastatic tumors were included for the analysis only if macroscopically enlarged, indicating the presence of metastatic cells. After digestion, tumor cells and leukocytes were depleted via immunomagnetic selection, and the resulting lymph node stromal cells were cultured briefly. Podoplanin was then used as a positive immunomagnetic selection marker to enrich for lymphatic and other endothelial cells in the lymph node. RNA was isolated from biological duplicate lymph node endothelial cell (LN EC) preparations and analysed by microarray.
Project description:CD4+ helper T (Th) cells are critical regulators of immune responses but their role in breast cancer is currently unknown. This work aims to characterize Th cells infiltrating invasive primary human breast tumors, analyze the influence by the tumor microenvironment and identify Th cell specific prognostic gene signatures. CD4+ T cells isolated from the tumor (TIL), axillary lymph node (LN) and blood (PB) of 10 patients were analyzed on Affymetrix U133 Plus 2.0 arrays. A confirmation set of 60 patients were studied by flow cytometry, qRT-PCR or immunohistochemistry and analyzed according to the extent of the tumor immune infiltrate. Gene expression profiles of freshly isolated TIL were also compared with TIL that had been rested overnight or with CD4+ T cells [non-stimulated (NS) or stimulated (S)] from healthy donor PB treated with tumor supernatant (SN). Analysis of CD4+ TIL by comparing their expression profiles to those of their conterparts from patient axillary lymph nodes and peripheral blood and healthy donor blood CD4+ T cells were isolated from primary tumors, axillary lymph nodes and peripheral blood of 10 patients with invasive breast carcinomas and blood of 4 healthy donors and analyzed on Affymetrix U133 Plus 2.0 arrays