Project description:This SuperSeries is composed of the following subset Series: GSE38565: The yeast PP2A-CDC55 phosphatase regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 [Time course 1] GSE42033: The yeast PP2A-CDC55 phosphatase regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 [Time course 2] Refer to individual Series
Project description:The yeast PP2A-Cdc55 Serine/Threonine phosphatase regulates transcription under certain conditions. It is required for full activation of the environmental stress response mediated by the transcription factors Msn2 and Msn4. PP2A-Cdc55 contributes to sustained nuclear accumulation of Msn2 and Msn4 and extended chromatin recruitment under stress conditions such as hyperosmolarity stress. Transcript profiles of Msn2 and Msn4 double mutants are similar to cdc55 and the corresponding triple mutants. This argues for a Msn2/4 specific function of PP2A-Cdc55. Time course of 10 20 and 30 minutes hyperosmolarity treated yeast cells of wild type (W303), msn2msn4, cdc55, msn2msn5cdc55 genetic background.
Project description:The yeast PP2A-Cdc55 Serine/Threonine phosphatase regulates transcription under certain conditions. It is required for full activation of the environmental stress response mediated by the transcription factors Msn2 and Msn4. PP2A-Cdc55 contributes to sustained nuclear accumulation of Msn2 and Msn4 and extended chromatin recruitment under stress conditions such as hyperosmolarity stress. Transcript profiles of Msn2 and Msn4 double mutants are similar to cdc55 and the corresponding triple mutants. This argues for a Msn2/4 specific function of PP2A-Cdc55.
Project description:The yeast PP2A-Cdc55 Serine/Threonine phosphatase regulates transcription under certain conditions. It is required for full activation of the environmental stress response mediated by the transcription factors Msn2 and Msn4. PP2A-Cdc55 contributes to sustained nuclear accumulation of Msn2 and Msn4 and extended chromatin recruitment under stress conditions such as hyperosmolarity stress. Transcript profiles of Msn2 and Msn4 double mutants are similar to cdc55 and the corresponding triple mutants. This argues for a Msn2/4 specific function of PP2A-Cdc55.
Project description:The yeast PP2A-Cdc55 Serine/Threonine phosphatase regulates transcription under certain conditions. It is required for full activation of the environmental stress response mediated by the transcription factors Msn2 and Msn4. PP2A-Cdc55 contributes to sustained nuclear accumulation of Msn2 and Msn4 and extended chromatin recruitment under stress conditions such as hyperosmolarity stress. Transcript profiles of Msn2 and Msn4 double mutants are similar to cdc55 and the corresponding triple mutants. This argues for a Msn2/4 specific function of PP2A-Cdc55. Time course of 0, 10 20 and 30 minutes hyperosmolarity treated yeast cells of msn2msn4 or msn2msn4cdc55 genetic background, both carrying plasmid pMsn2pMsn2DNES; reference hybridization: untreated W303 msn2msn4 pMsn2pMsn2DNES labelled with Cy3
Project description:The yeast PP2A-CDC55 phosphatase regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 [Time course 1]
Project description:The yeast PP2A-CDC55 phosphatase regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 [Time course 2]
Project description:Samples GSM206658-GSM206693: Acquired Stress resistance in S. cerevisiae: NaCl primary and H2O2 secondary Transcriptional timecourses of yeast cells exposed to 0.7M NaCl alone, 0.5mM H2O2 alone, or 0.5mM H2O2 following 0.7M NaCl, all compared to an unstressed sample. Repeated using msn2∆ strain. Samples GSM291156-GSM291196: Transcriptional response to stress in strains lacking MSN2 and/or MSN4 Transcriptional timecourses of yeast cells (WT, msn2∆, msn4∆, or msn2∆msn4∆) exposed to 0.7M NaCl for 45 minutes or 30-37˚C Heat Shift for 15 min compared to an unstressed sample of the same strain. Keywords: Stress Response
Project description:Recent single-cell studies have revealed that yeast stress response involves multiple transcription factors that are temporally activated in pulses. However, it remains largely unclear whether and how these dynamic transcription factors temporally interact to regulate stress survival. Here we show that budding yeast cells can exploit the temporal relationship between paralogous general stress regulators, Msn2 and Msn4, during stress response. We found that individual pulses of Msn2 and Msn4 are largely redundant, and cells can enhance the expression of their shared target genes by increasing their temporal divergence. Thus, functional redundancy between these two paralogs is modulated in a dynamic manner to confer fitness advantages for yeast cells, which might feed back to promote the preservation of their functional redundancy. This evolutionary implication was supported by evidence from Msn2/Msn4 orthologs and analyses of other transcription factor paralogs. Together, we show a cell fate control mechanism through temporal redundancy modulation in yeast, which may represent an evolutionarily important strategy for maintaining functional redundancy between gene duplicates.
Project description:The heat shock response is an ancient and ubiquitous program allowing organisms to survive adverse environmental conditions. In S. cerevisiae, three transcription factors, Hsf1, Msn2 and Msn4, are thought to regulate the stress response. While Msn2/4 can be deleted, Hsf1 is essential. By combining the depletion of Hsf1 with the deletion of Msn2 and Msn4, we were able to switch off the central stress response. We show that the transcription factors Hsf1 and Msn2/4 follow different strategies and regimes: Whereas Msn2/4 are responsible for a broad metabolic response, Hsf1 triggers a direct chaperone response to stabilize and repair unfolded proteins. Exposure of cells lacking Msn2/4 and Hsf1 to thermal stress resulted in massive protein aggregation. Comparison with wildtype yeast revealed that among the proteins rescued by the stress response are many essential proteins.