Project description:Background; Basal cell carcinoma (BCC) is the most common cancer in humans. The pathogenesis of BCC is associated with the sonic hedgehog (SHH) signaling pathway. Vismodegib, a smoothened inhibitor, that targets this pathway is now in clinical use for advanced BCC patients, but its efficacy is limited. Therefore, new therapeutic options for this cancer are required. Methods; We studied gene expression profiling of BCC tumour tissue coupled with laser capture microdissection to identify tumor specific receptor tyrosine kinase expression that can be targeted by small molecule inhibitors. The expression of selected molecules was confirmed by quantitative RT-PCR (qRT-PCR) and by immunohistochemistry. The action of kinase inhibitors was examined on primary normal human epidermal keratinocytes. Results; We found a >250 fold change increase (false discovery rate <10-4) of the oncogene, anaplastic lymphoma kinase (ALK) as well as its ligands, pleiotrophin and midkine in BCC compared to microdissected normal epidermis. qRT-PCR confirmed increased expression of ALK (p<0.05). Stronger staining of phosphorylated ALK in BCC tumour nests than normal skin was observed by immunohistochemistry. Additionally, Crizotinib, an FDA-approved ALK inhibitor, reduced keratinocyte proliferation in culture, whereas a c-Met, another receptor tyrosine kinase, inhibitor did not. Crizotinib significantly reduced the expression of GLI1 and CCND2 mRNA by approximately 60% and 20%, respectively (p<0.05). Conclusions; Our data suggest that ALK may increase GLI1 expression in parallel with the conventional SHH-pathway and promotes keratinocyte proliferation. Furthermore, an ALK inhibitor alone or in combination with targeting SHH-pathway molecules may be a potential treatment for BCC patients. Laser capture microdissection was performed on 5 cases of nodular/superficial BCC, 5 cases of infiltrative BCC.
Project description:Background; Basal cell carcinoma (BCC) is the most common cancer in humans. The pathogenesis of BCC is associated with the sonic hedgehog (SHH) signaling pathway. Vismodegib, a smoothened inhibitor, that targets this pathway is now in clinical use for advanced BCC patients, but its efficacy is limited. Therefore, new therapeutic options for this cancer are required. Methods; We studied gene expression profiling of BCC tumour tissue coupled with laser capture microdissection to identify tumor specific receptor tyrosine kinase expression that can be targeted by small molecule inhibitors. The expression of selected molecules was confirmed by quantitative RT-PCR (qRT-PCR) and by immunohistochemistry. The action of kinase inhibitors was examined on primary normal human epidermal keratinocytes. Results; We found a >250 fold change increase (false discovery rate <10-4) of the oncogene, anaplastic lymphoma kinase (ALK) as well as its ligands, pleiotrophin and midkine in BCC compared to microdissected normal epidermis. qRT-PCR confirmed increased expression of ALK (p<0.05). Stronger staining of phosphorylated ALK in BCC tumour nests than normal skin was observed by immunohistochemistry. Additionally, Crizotinib, an FDA-approved ALK inhibitor, reduced keratinocyte proliferation in culture, whereas a c-Met, another receptor tyrosine kinase, inhibitor did not. Crizotinib significantly reduced the expression of GLI1 and CCND2 mRNA by approximately 60% and 20%, respectively (p<0.05). Conclusions; Our data suggest that ALK may increase GLI1 expression in parallel with the conventional SHH-pathway and promotes keratinocyte proliferation. Furthermore, an ALK inhibitor alone or in combination with targeting SHH-pathway molecules may be a potential treatment for BCC patients.
Project description:The mechanisms underlying the pathogenesis of the constitutively active tyrosine kinase nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expressing anaplastic large cell lymphoma are not completely understood. Here we show using an integrated phosphoproteomic and metabolomic strategy that NPM-ALK induces a metabolic shift toward aerobic glycolysis, increased lactate production, and biomass production. The metabolic shift is mediated through the anaplastic lymphoma kinase (ALK) phosphorylation of the tumor-specific isoform of pyruvate kinase (PKM2) at Y105, resulting in decreased enzymatic activity. Small molecule activation of PKM2 or expression of Y105F PKM2 mutant leads to reversal of the metabolic switch with increased oxidative phosphorylation and reduced lactate production coincident with increased cell death, decreased colony formation, and reduced tumor growth in an in vivo xenograft model. This study provides comprehensive profiling of the phosphoproteomic and metabolomic consequences of NPM-ALK expression and reveals a novel role of ALK in the regulation of multiple components of cellular metabolism. Our studies show that PKM2 is a novel substrate of ALK and plays a critical role in mediating the metabolic shift toward biomass production and tumorigenesis.
Research is published:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3739039/
Project description:Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is an anaplastic lymphoma kinase-negative (ALKneg) T-cell lymphoma. Here, we provide RNA-seq data of four BIA-ALCL and four ALCL cell lines:TLBR-1, TLBR-2, TLBR-3, TLBR-4 and DEL (two replicates), KARPAS-299, KI-JK, SUP-M2 (two replicates), respectively.
Project description:Deregulation of chromatin modifiers, including DNA helicases, are emerging as one of the mechanism underlying the transformation of anaplastic lymphoma kinase negative (ALK−) anaplastic large cell lymphoma (ALCL). We recently identified the DNA helicase HELLS as central for proficient ALK-ALCL proliferation and progression. By performing RNA-sequencing profiling coupled with bioinformatic prediction, we demonstrated that HELLS contributes to an appropriate cytokinesis via the transcriptional regulation of genes involved in cleavage furrow regulation in ALK- anaplastic large cell lymphoma
Project description:This study will evaluate the efficacy and safety of alectinib in participants with Anaplastic Lymphoma Kinase (ALK)-positive locally advanced or metastatic solid tumors other than lung cancer.
Project description:Little is known regarding the differences between BCC subtypes, despite clearly distinct phenotypes and clinical outcomes. In particular, what distinguishes the aggressive infiltrative BCC subtype. We determine that infiltrative BCC do not contain an obviously distinct genomic variant profile however show clear molecular signalling differences compared to less aggressive subtypes. RNA sequencing enabled identification of candidate regulators of infiltrative subtype development such as Wnt and Integrin signalling, and suggested that infiltrative BCC have a strong relationship with their surrounding environment. In particular, WISP1 and Periostin gene expression is associated with the infiltrating subtype and represent candidate regulators of subtype differences in human BCC.
Project description:Little is known about metabolic vulnerabilities in oncogene-driven lung cancer. Here, we performed a phosphoproteomic screen in anaplastic lymphoma kinase (ALK)-rearranged (“ALK+”) patient-derived cell lines and identified guanylate kinase 1 (GUK1), a GDP-synthesizing enzyme, as a novel target of ALK signaling in lung cancer. We demonstrate that ALK binds to and phosphorylates GUK1 at tyrosine 74 (Y74), resulting in increased GDP biosynthesis. Spatially resolved mass spectrometry imaging of ALK+ patient tumor specimens shows enhanced phosphorylation of GUK1 that significantly correlates with guanine nucleotides in situ. Abrogation of GUK1 phosphorylation reduces intracellular GDP and GTP pools and decreases MAPK signaling through impaired Ras-GTP loading. A GUK1 variant that cannot be phosphorylated (Y74F) decreases tumor proliferation in vitro and in vivo. Beyond ALK, we determined that other oncogenic fusion proteins in lung cancer also regulate GUK1 phosphorylation. These studies may pave the way for the development of new therapeutic approaches by exploiting metabolic dependencies in oncogene-driven lung cancers.