Project description:The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of laser capture microdissection (LCM) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in laser capture microdissected components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone. Experiment Overall Design: At different developmental time points we isolate discrete elements of the kidney by using laser capture microdissection and then define their gene expression profiles with microarrays.
Project description:The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of laser capture microdissection (LCM) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in laser capture microdissected components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone. Keywords: Comparison of kidney components. At different developmental time points we isolate discrete elements of the kidney by using laser capture microdissection and then define their gene expression profiles with microarrays.
Project description:The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of laser capture microdissection (LCM) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in laser capture microdissected components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone. Experiment Overall Design: At different developmental time points we isolate discrete elements of the kidney by using laser capture microdissection and then define their gene expression profiles with microarrays.
Project description:E11.5 metanephric mesenchyme and ureteric bud were dissected from the E11.5 kidney rudiment using fine manual microdissection (ureteric bud only) or both fine manual microdissection and laser capture microdissection (metanephric mesenchyme) to define the gene expression profiles of these structures. Additionally, HoxA11, HoxD11 compound null E11.5 metanephric mesenchyme was obtained through laser capture microdissection allowing analysis of possible Hox targets in kidney development. Targets from multiple biological replicates of each were generated and the expression profiles were determined using Affymetrix MOE430_v2 arrays. Keywords: embryonic metanephric kidney, kidney development, Hoxa11, Hoxd11, compound null targeted mice
Project description:Through laser capture microdissection and microarray analysis combined with slightly modified RNA extraction and amplification. we could analyze the subtle differential expression between colon normal cell and ulcerative colitis. Keywords: Ulcerative Colitis, amplification, microdissection
Project description:We used laser capture microdissection (LCM) to capture globular scarlet runner bean embryo propers and suspensors, and profiled the transcriptomes of these two embryo regions using next-generation sequencing. Our long-term goal is to understand the region-specific differentiation processes that occur during early embryo development and how genes are activated specifically in the suspensor and embryo proper.
Project description:We used laser capture microdissection (LCM) to capture globular stage common bean embryo proper and suspensor, and profiled the transcriptome of these two embryo regions using next-generation sequencing. Our long-term goal is to understand the region-specific differentiation processes that occur during early embryo development and how genes are activated specifically in the suspensor and embryo proper.
Project description:The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing bladder. The central thesis is straightforward. The combination of microdissected and laser capture microdissection (LCM) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing urogenital system. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone. The data submitted here represents the gene expression profiles of compartmental bladder tissues collected through laser capture microscopy. Keywords: Gene expression comparison from developing regions of the mouse postnatal day 1 and postnatal day 2 urogenital system.
Project description:The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing bladder. The central thesis is straightforward. The combination of microdissected and laser capture microdissection (LCM) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing urogenital system. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone. The data submitted here represents the gene expression profiles of compartmental bladder tissues collected through laser capture microscopy. Experiment Overall Design: Bladders were isolated from newborn SMGA/EGFP transgenic mice, embedded in OCT, frozen and sectioned (8 microns). Detrusor, stroma and urothelium were isloated using laser capture microscopy. The caps were frozen on dry ice and stored at -80 degrees C until RNA was extracted for gene expression analysis. Laser captured and total RNA isolated for gene expression analysis using the Affymetrix MOE430 microarray chip.