Project description:Irradiation of the K-rasLA1 mouse model with a fractionated dose of 1.0Gy 56Fe- particles increases the incidence of invasive carcinoma compared to unirradiated controls or those irradiated with an acute dose. Microarray profiling was perfromed on whole lungs from K-rasLA1 mice in order to determine global expression changes in the lung following radiation exposure. RNA was extracted from K-rasLA1 lungs from unirradiated control animals or those irradiated with a fractionated or acute dose of 1.0Gy 56Fe- particles 70 days post-irradiation when lungs are still histologically indistiguishable and only contain benign lesions.
Project description:Irradiation of the K-rasLA1 mouse model with a fractionated dose of 1.0Gy 56Fe- particles increases the incidence of invasive carcinoma compared to unirradiated controls or those irradiated with an acute dose. Microarray profiling was perfromed on whole lungs from K-rasLA1 mice in order to determine global expression changes in the lung following radiation exposure. RNA was extracted from K-rasLA1 lungs from unirradiated control animals or those irradiated with a fractionated or acute dose of 1.0Gy 56Fe- particles 70 days post-irradiation when lungs are still histologically indistiguishable and only contain benign lesions. 129S2 K-rasLA1 mice were either irradiated with an acute (1.0Gy x1; n = 15) or fractionated (0.2Gy x5; n=13) dose of 1.0Gy 56Fe- particles or left unirradiated (n=13). Animals were euthanized 70 days post-irradiation and RNA was extracted from the whole left lung of each animal.
Project description:Radiotherapy is one of the most common therapies for cancer. Approximately half of all cancer patients will receive radiotherapy at some point during treatment. Consequences of IR treatment are dose dependent and different sensitivity to IR of various types of cells is well established. To reduce the damage of IR to most sensitive cells of normal (noncancerous) tissue radiotherapy is administered as fractionated dose treatment applying radiation in ~2 Gy fractions every 24 hours, 5 times per week. However, during the therapy intrinsic and acquired tumor radioresistance may result in treatment failures. Comprehensive mechanisms of the resistance to irradiation as well as mechanisms of cellular response to fractionated dose IR remain unclear. Therefore, in the present study we evaluated global gene expression changes in murine Lewis lung carcinoma LLC1 cells following X-ray irradiation of single 2 Gy or 10 Gy and 2 Gy x 5 fractionated doses.
Project description:Radiotherapy is one of the most common therapies for cancer. Approximately half of all cancer patients will receive radiotherapy at some point during treatment. Consequences of IR treatment are dose dependent and different sensitivity to IR of various types of cells is well established. To reduce the damage of IR to most sensitive cells of normal (noncancerous) tissue radiotherapy is administered as fractionated dose treatment applying radiation in ~2 Gy fractions every 24 hours, 5 times per week. However, during the therapy intrinsic and acquired tumor radioresistance may result in treatment failures. Comprehensive mechanisms of the resistance to irradiation as well as mechanisms of cellular response to fractionated dose IR remain unclear. Therefore, in the present study we evaluated global gene expression changes in murine Lewis lung carcinoma LLC1 cells following X-ray irradiation of single 2 Gy or 10 Gy and 2 Gy x 5 fractionated doses. Total RNA was harvested from mouse Lewis lung carcinoma cells 4h after treatment of single (2 Gy or 10 Gy) or fractionated (5x2 Gy) ionizing radiation dose.
Project description:Radiotherapy is one of the most common therapies for cancer. Approximately half of all cancer patients will receive radiotherapy at some point during treatment. Consequences of IR treatment are dose dependent and different sensitivity to IR of various types of cells is well established. To reduce the damage of IR to most sensitive cells of normal (noncancerous) tissue radiotherapy is administered as fractionated dose treatment applying radiation in ~2 Gy fractions every 24 hours, 5 times per week. However, during the therapy intrinsic and acquired tumor radioresistance may result in treatment failures. Comprehensive mechanisms of the resistance to irradiation as well as mechanisms of cellular response to fractionated dose IR remain unclear. Different gene expression patterns may be partially influenced by short ~22 nt non-coding RNA molecules called microRNAs (miRNAs) via translational regulation or RNA degradation mechanisms. Therefore, in the present study we evaluated global miRNA changes in murine Lewis lung carcinoma LLC1 cells following X-ray irradiation of single 2 Gy or 10 Gy and 2 Gy x 5 fractionated doses.
Project description:Radiotherapy is one of the most common therapies for cancer. Approximately half of all cancer patients will receive radiotherapy at some point during treatment. Consequences of IR treatment are dose dependent and different sensitivity to IR of various types of cells is well established. To reduce the damage of IR to most sensitive cells of normal (noncancerous) tissue radiotherapy is administered as fractionated dose treatment applying radiation in ~2 Gy fractions every 24 hours, 5 times per week. However, during the therapy intrinsic and acquired tumor radioresistance may result in treatment failures. Comprehensive mechanisms of the resistance to irradiation as well as mechanisms of cellular response to fractionated dose IR remain unclear. Different gene expression patterns may be partially influenced by short ~22 nt non-coding RNA molecules called microRNAs (miRNAs) via translational regulation or RNA degradation mechanisms. Therefore, in the present study we evaluated global miRNA changes in murine Lewis lung carcinoma LLC1 cells following X-ray irradiation of single 2 Gy or 10 Gy and 2 Gy x 5 fractionated doses. Total RNA enriched in small noncoding RNAs was isolated from mouse Lewis lung carcinoma cells 4h after treatment of single (2 Gy or 10 Gy) or fractionated (5x2 Gy) ionizing radiation dose.
Project description:While modern radiotherapy technologies can precisely deliver higher doses of radiation to tumors; thus, reducing overall radiation exposure to normal tissues, moderate dose and normal tissue toxicity still remains a significant limitation. The present study profiled the global effects on transcript and miR expression in Human Coronary Artery Endothelial Cells (HCAECs) using single-dose irradiation (SD, 10Gy) or multi-fractionated irradiation (MF, 2Gy x 5) regimens. Longitudinal timepoints were collected after a SD or final dose of MF irradiation for analysis using Agilent Human Gene Expression and miRNA microarray platforms. Compared to SD, the exposure to MF resulted in robust transcript and miR expression changes in terms of the number and magnitude. For data analysis, statistically significant mRNAs (2-fold) and miRs (1.5-fold) were processed by Ingenuity Pathway Analysis (IPA) to uncover miRs associated with target transcripts from several cellular pathways post-irradiation. Interestingly, MF radiation induced a cohort of mRNAs and miRs that coordinate the induction of immune response pathway under tight regulation. Additionally, mRNAs and miRs associated with DNA replication, recombination and repair, apoptosis, cardiovascular events and angiogenesis were revealed. Human Coronary Artery Endothelial Cells (HCAECs) were irradiated in a PANTAK high frequency X-ray generator (Precision X-ray Inc., N. Bedford, CT), operated at 300kV and 10MA. The dose rate was 1.6 Gy per min. Cells were plated into T75cm2 flasks (1-1.5 x 10^6 for single dose radiation and 0.6-0.8 x 10^6 for fractionated radiation). After 24h, cells were exposed to a total of 10 Gy radiation administered either as a single-dose radiation (SD), or as multi-fractionated radiation of 2 Gy x 5 (MF). These non-isoeffective doses were selected to simulate clinical hypofractionated and conventionally fractionated radiotherapy regimens. For the MF protocol, cells were exposed to 2 Gy radiation twice a day, at 6h interval. The cells were approximately 90% confluent at the time of harvesting. For both protocols, radiation-induced changes were analyzed at 6h and 24h after a SD and 6h and 24h after the final dose of fractionated irradiation. Separate controls were maintained for SD and MF radiation protocols.
Project description:While modern radiotherapy technologies can precisely deliver higher doses of radiation to tumors; thus, reducing overall radiation exposure to normal tissues, moderate dose and normal tissue toxicity still remains a significant limitation. The present study profiled the global effects on transcript and miR expression in Human Coronary Artery Endothelial Cells (HCAECs) using single-dose irradiation (SD, 10Gy) or multi-fractionated irradiation (MF, 2Gy x 5) regimens. Longitudinal timepoints were collected after a SD or final dose of MF irradiation for analysis using Agilent Human Gene Expression and miRNA microarray platforms. Compared to SD, the exposure to MF resulted in robust transcript and miR expression changes in terms of the number and magnitude. For data analysis, statistically significant mRNAs (2-fold) and miRs (1.5-fold) were processed by Ingenuity Pathway Analysis (IPA) to uncover miRs associated with target transcripts from several cellular pathways post-irradiation. Interestingly, MF radiation induced a cohort of mRNAs and miRs that coordinate the induction of immune response pathway under tight regulation. Additionally, mRNAs and miRs associated with DNA replication, recombination and repair, apoptosis, cardiovascular events and angiogenesis were revealed. Human Coronary Artery Endothelial Cells (HCAECs) were irradiated in a PANTAK high frequency X-ray generator (Precision X-ray Inc., N. Bedford, CT), operated at 300kV and 10MA. The dose rate was 1.6 Gy per min. Cells were plated into T75cm2 flasks (1-1.5 x 10^6 for single dose radiation and 0.6-0.8 x 10^6 for fractionated radiation). After 24h, cells were exposed to a total of 10 Gy radiation administered either as a single-dose radiation (SD), or as multi-fractionated radiation of 2 Gy x 5 (MF). These non-isoeffective doses were selected to simulate clinical hypofractionated and conventionally fractionated radiotherapy regimens. For the MF protocol, cells were exposed to 2 Gy radiation twice a day, at 6h interval. The cells were approximately 90% confluent at the time of harvesting. For both protocols, radiation-induced changes were analyzed at 6h and 24h after a SD and 6h and 24h after the final dose of fractionated irradiation. Separate controls were maintained for SD and MF radiation protocols.
Project description:(1) Gene expression profiles during radiation-induced premature, terminal differentiation of exponentially growing progenitor fibroblasts to postmitotic functional cells after single dose (4 Gy) or two fractions (2×4 Gy). (2) Comparison with gene expression profile of confluent cells after fractionated irradiation with 3×4 Gy
Project description:Expression profiles in mouse liver exposed to long-term gamma-irradiation were examined to assess in vivo effects of low dose-rate radiation. Three groups of male C57BL/6J mice were exposed to whole body irradiation at dose-rates of 17-20 mGy/day, 0.86-1.0 mGy/day or 0.042-0.050 mGy/day for 401-485 days (cumulative doses were approximately 8 Gy, 0.4 Gy or 0.02 Gy, respectively). Expression profiles were produced for RNA isolated from irradiated individual animals and for pooled RNA from sham-irradiated 3 animals for control. The expression levels of 6 irradiated animals for each dose were compared individually with those of 2 pooled controls (3 irradiated samples to one pooled control in first and second experiments).