Project description:For decades the tobacco plant has served as a model organism in plant biology to answer fundamental biological questions in the areas of plant development, physiology, and genetics. Due to the lack of sufficient coverage of genomic sequences, however, none of the expressed sequence tag (EST)-based chips developed to date cover gene expression from the whole genome. The availability of Tobacco Genome Initiative (TGI) sequences provides a useful resource to build a whole genome exon array, even if the assembled sequences are highly fragmented. Here, the design of a Tobacco Exon Array is reported and an application to improve the understanding of genes regulated by cadmium (Cd) in tobacco is described. From the analysis and annotation of the 1,271,256 Nicotiana tabacum fasta and quality files from methyl filtered genomic survey sequences (GSS) obtained from the TGI and ~56,000 ESTs available in public databases, an exon array with 272,342 probesets was designed (four probes per exon) and tested on two selected tobacco varieties. Two tobacco varieties out of 45 accumulating low and high cadmium in leaf were identified based on the GGE biplot analysis, which is analysis of the genotype main effect (G) plus analysis of the genotype by environment interaction (GE) of eight field trials (four fields over two years) showing reproducibility across the trials. The selected varieties were grown under greenhouse conditions in two different soils and subjected to exon array analyses using root and leaf tissue to understand the genetic make-up of the Cd accumulation. An Affymetrix Exon Array was developed to cover a large (~90%) proportion of the tobacco gene space. The Tobacco Exon Array will be available for research use through the Affymetrix array catalogue. As a proof of the exon array usability, we have demonstrated that the Tobacco Exon Array is a valuable tool for studying Cd accumulation in tobacco leaves. Data from field and greenhouse experiments supported by gene expression studies strongly suggested that the difference in leaf Cd accumulation between the two specific tobacco cultivars is dependent solely on genetic factors and genetic variability rather than on the environment.
Project description:For decades the tobacco plant has served as a model organism in plant biology to answer fundamental biological questions in the areas of plant development, physiology, and genetics. Due to the lack of sufficient coverage of genomic sequences, however, none of the expressed sequence tag (EST)-based chips developed to date cover gene expression from the whole genome. The availability of Tobacco Genome Initiative (TGI) sequences provides a useful resource to build a whole genome exon array, even if the assembled sequences are highly fragmented. Here, the design of a Tobacco Exon Array is reported and an application to improve the understanding of genes regulated by cadmium (Cd) in tobacco is described. From the analysis and annotation of the 1,271,256 Nicotiana tabacum fasta and quality files from methyl filtered genomic survey sequences (GSS) obtained from the TGI and ~56,000 ESTs available in public databases, an exon array with 272,342 probesets was designed (four probes per exon) and tested on two selected tobacco varieties. Two tobacco varieties out of 45 accumulating low and high cadmium in leaf were identified based on the GGE biplot analysis, which is analysis of the genotype main effect (G) plus analysis of the genotype by environment interaction (GE) of eight field trials (four fields over two years) showing reproducibility across the trials. The selected varieties were grown under greenhouse conditions in two different soils and subjected to exon array analyses using root and leaf tissue to understand the genetic make-up of the Cd accumulation. An Affymetrix Exon Array was developed to cover a large (~90%) proportion of the tobacco gene space. The Tobacco Exon Array will be available for research use through the Affymetrix array catalogue. As a proof of the exon array usability, we have demonstrated that the Tobacco Exon Array is a valuable tool for studying Cd accumulation in tobacco leaves. Data from field and greenhouse experiments supported by gene expression studies strongly suggested that the difference in leaf Cd accumulation between the two specific tobacco cultivars is dependent solely on genetic factors and genetic variability rather than on the environment. 22 samples were used with 3 different experimental factors: [1] 2 different tissues (leaves and roots/lateral), [2] 2 different mutations (V5 and V21), and [3] 2 different stimuli (Soil 1 and Soil 2). 2-3 biological replicates were used. One sample did not pass QC and is not included in this submission.
Project description:Gene expression was measured in leaves from dark treated tobacco plants to investigate the changes associated with dark induced senescence.
Project description:Transgenic tobacco (Nicotiana tabacum) expressing Caenorhabditis elegans cell death genes, Ced4 and Ced3, show evidence suggesting such expressions protect the plants from infestation by the plant parasitic nematode Meloidogyne incognita. Although positive results have been correlated with the gene expressions (data in preparation for publication; a draft of the publication can be provided upon request), the mechanism by which the nematode protection is manifested is not clearly understood. One possibility is that the C. elegans cell death proteins produced by the transgenic plants are being ingested and incorporated into the nematode’s own cell death pathway, leading to their demise. Alternatively, it is also possible that expression of the C. elegans cell death genes promotes the endogenous resistance genes of the plant, leading to nematode resistance. We want to test the later hypothesis by conducting a reference design microarray experiment to establish the expression profile of Ced3, and Ced4 homozygous plants and Ced3xCed4 double heterozygous plants in comparison with wild-type tobacco plants. If the hypothesis is correct, we expect to detect increased expression of pathogenicity-related genes in the transgenic plants. Furthermore, characterization of the expression profiles in these transgenic plants will provide us directionality for our future research on the elucidation of this resistance mechanism. Keywords: Reference design
Project description:Characterization of isopropylmalate dehydratase and its influences on chloroplast development and acylsugar accumulation in tobacco leaf
Project description:Transgenic tobacco (Nicotiana tabacum) expressing Caenorhabditis elegans cell death genes, Ced4 and Ced3, show evidence suggesting such expressions protect the plants from infestation by the plant parasitic nematode Meloidogyne incognita. Although positive results have been correlated with the gene expressions (data in preparation for publication; a draft of the publication can be provided upon request), the mechanism by which the nematode protection is manifested is not clearly understood. One possibility is that the C. elegans cell death proteins produced by the transgenic plants are being ingested and incorporated into the nematode’s own cell death pathway, leading to their demise. Alternatively, it is also possible that expression of the C. elegans cell death genes promotes the endogenous resistance genes of the plant, leading to nematode resistance. We want to test the later hypothesis by conducting a reference design microarray experiment to establish the expression profile of Ced3, and Ced4 homozygous plants and Ced3xCed4 double heterozygous plants in comparison with wild-type tobacco plants. If the hypothesis is correct, we expect to detect increased expression of pathogenicity-related genes in the transgenic plants. Furthermore, characterization of the expression profiles in these transgenic plants will provide us directionality for our future research on the elucidation of this resistance mechanism. Keywords: Reference design 27 hybs total
Project description:The number of known proteins associated with plant lipid droplets (LDs) is small compared to other organelles. Many questions of LD biosynthesis and degradation remain open, also due to lack of candidate LD proteins whose characterization could help to elucidate their function in those processes. We performed a proteomic screen on LDs isolated from Nicotiana tabacum pollen tubes. Proteins that were highly enriched in the LD fraction compared to the total or cytosolic fraction where verified for LD localization via transient expression in tobacco pollen tubes. We also compared the isoforms of typical LD proteins found in the pollen tubes on a qualitative level to the isoforms found in tobacco seeds.