Project description:Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that resists current treatments. To test epigenetic therapy against this cancer we used the DNA demethylating drug 5-aza-2’-deoxycytidine (DAC) in a KrasLSL-G12D; p53LSL-R270H/+; Pdx1-cre; Brca1flex2/flex2 (KPC-Brca1) mouse model of aggressive stroma-rich PDAC. In untreated tumors, we found globally decreased 5-methyl-cytosine (5mC) in malignant epithelial cells and in cancer-associated myofibroblasts (CAFs), and increased amounts of 5-hydroxymethyl-cytosine (5HmC) in CAFs, in progression from pancreatic intraepithelial neoplasia (PanIN) to PDAC. DAC further reduced DNA methylation and slowed PDAC progression, markedly extending survival in an early treatment protocol and significantly though transiently inhibiting tumor growth when initiated later, without adverse side effects. Escaping tumors contained areas of sarcomatoid transformation with disappearance of CAFs. Mixing-allografting experiments and proliferation indices showed that DAC efficacy was due to inhibition of both the malignant epithelial cells and the stromal CAFs. Expression profiling and immunohistochemistry highlighted DAC-induction of STAT1 in the tumors, and DAC plus gamma-interferon produced an additive anti-proliferative effect on PDAC cells. DAC induced strong expression of the testis antigen DAZL in CAFs. These data show that DAC is effective against PDAC in vivo and provide a rationale for future studies combining hypomethylating agents with cytokines and immunotherapy. Treatment of a short-term explant culture of cancer-associated fibroblasts (CAFs) from a KPC-Brca1 mouse pancreatic carcinoma, with 2 micromolar 5-aza-dC (decitabine; DAC) for 48 hours. The experiment includes 3 replicate plates untreated and 3 replicates treated.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that resists current treatments. To test epigenetic therapy against this cancer we used the DNA demethylating drug 5-aza-2’-deoxycytidine (DAC) in a KrasLSL-G12D; p53LSL-R270H/+; Pdx1-cre; Brca1flex2/flex2 (KPC-Brca1) mouse model of aggressive stroma-rich PDAC. In untreated tumors, we found globally decreased 5-methyl-cytosine (5mC) in malignant epithelial cells and in cancer-associated myofibroblasts (CAFs), and increased amounts of 5-hydroxymethyl-cytosine (5HmC) in CAFs, in progression from pancreatic intraepithelial neoplasia (PanIN) to PDAC. DAC further reduced DNA methylation and slowed PDAC progression, markedly extending survival in an early treatment protocol and significantly though transiently inhibiting tumor growth when initiated later, without adverse side effects. Escaping tumors contained areas of sarcomatoid transformation with disappearance of CAFs. Mixing-allografting experiments and proliferation indices showed that DAC efficacy was due to inhibition of both the malignant epithelial cells and the stromal CAFs. Expression profiling and immunohistochemistry highlighted DAC-induction of STAT1 in the tumors, and DAC plus gamma-interferon produced an additive anti-proliferative effect on PDAC cells. DAC induced strong expression of the testis antigen DAZL in CAFs. These data show that DAC is effective against PDAC in vivo and provide a rationale for future studies combining hypomethylating agents with cytokines and immunotherapy. Treatment of a short-term explant culture of malignant epithelial cells from a KPC-Brca1 mouse pancreatic carcinoma, with 0.5 micromolar 5-aza-dC (decitabine; DAC) for 48 hours. The experiment includes 3 replicate plates untreated and 3 replicates treated.
Project description:Gene expression analysis of 5-aza-dC treated pancreatic cancer associated fibroblasts To identify genes silenced by methylation in pancreatic CAFs, we performed gene expression profiling on 5-aza-dC treated pancreatic cancer associated fibroblast cultures using Affymetrix Exon arrays.
Project description:Gene expression analysis of 5-aza-dC treated pancreatic cancer associated fibroblasts To identify genes silenced by methylation in pancreatic CAFs, we performed gene expression profiling on 5-aza-dC treated pancreatic cancer associated fibroblast cultures using Affymetrix Exon arrays. We analyzed 5 untreated and 5-aza-dC-treated pancreatic cancer associated fibroblast cultures using the Affymetrix Human Exon 1.0 ST platform. Gene expression levels were compared using Partek (version 6.3beta).
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that resists current treatments. To test epigenetic therapy against this cancer we used the DNA demethylating drug 5-aza-2’-deoxycytidine (DAC) in a KrasLSL-G12D; p53LSL-R270H/+; Pdx1-cre; Brca1flex2/flex2 (KPC-Brca1) mouse model of aggressive stroma-rich PDAC. In untreated tumors, we found globally decreased 5-methyl-cytosine (5mC) in malignant epithelial cells and in cancer-associated myofibroblasts (CAFs), and increased amounts of 5-hydroxymethyl-cytosine (5HmC) in CAFs, in progression from pancreatic intraepithelial neoplasia (PanIN) to PDAC. DAC further reduced DNA methylation and slowed PDAC progression, markedly extending survival in an early treatment protocol and significantly though transiently inhibiting tumor growth when initiated later, without adverse side effects. Escaping tumors contained areas of sarcomatoid transformation with disappearance of CAFs. Mixing-allografting experiments and proliferation indices showed that DAC efficacy was due to inhibition of both the malignant epithelial cells and the stromal CAFs. Expression profiling and immunohistochemistry highlighted DAC-induction of STAT1 in the tumors, and DAC plus gamma-interferon produced an additive anti-proliferative effect on PDAC cells. DAC induced strong expression of the testis antigen DAZL in CAFs. These data show that DAC is effective against PDAC in vivo and provide a rationale for future studies combining hypomethylating agents with cytokines and immunotherapy.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that resists current treatments. To test epigenetic therapy against this cancer we used the DNA demethylating drug 5-aza-2’-deoxycytidine (DAC) in a KrasLSL-G12D; p53LSL-R270H/+; Pdx1-cre; Brca1flex2/flex2 (KPC-Brca1) mouse model of aggressive stroma-rich PDAC. In untreated tumors, we found globally decreased 5-methyl-cytosine (5mC) in malignant epithelial cells and in cancer-associated myofibroblasts (CAFs), and increased amounts of 5-hydroxymethyl-cytosine (5HmC) in CAFs, in progression from pancreatic intraepithelial neoplasia (PanIN) to PDAC. DAC further reduced DNA methylation and slowed PDAC progression, markedly extending survival in an early treatment protocol and significantly though transiently inhibiting tumor growth when initiated later, without adverse side effects. Escaping tumors contained areas of sarcomatoid transformation with disappearance of CAFs. Mixing-allografting experiments and proliferation indices showed that DAC efficacy was due to inhibition of both the malignant epithelial cells and the stromal CAFs. Expression profiling and immunohistochemistry highlighted DAC-induction of STAT1 in the tumors, and DAC plus gamma-interferon produced an additive anti-proliferative effect on PDAC cells. DAC induced strong expression of the testis antigen DAZL in CAFs. These data show that DAC is effective against PDAC in vivo and provide a rationale for future studies combining hypomethylating agents with cytokines and immunotherapy.
2013-01-01 | GSE42364 | GEO
Project description:Genes activated by 5-aza-dC (DAC) in pancreatic cancer
Project description:Background: Treatment with single-agent decitabine (5aza-dC; DAC), a well-tolerated DNA hypomethylating drug, in a mouse model of pancreatic ductal adenocarcinoma (PDAC), KPC-Brca1, extended the survival of the animals and upregulated immune-related pathways. Here we extend these findings to combination therapy, using DAC followed by the immune checkpoint inhibitor anti-PD-1H in the original more widely utilized KPC (Pdx-Cre Kras/p53) model. Methods: We treated tumor-bearing KPC mice with DAC, and with anti-PD-1H, separately and in combination, and assessed tumor growth, mouse survival, immune cell infiltration of the tumors, and gene expression, compared to historical and mock-treated control mice. Results: Treatment with single-agent DAC led to increased Cd8+ tumor-infiltrating T cells (TILs), increased tumor necrosis, and slower tumor growth. RNA-seq analysis revealed increased expression of a group of myeloid-lineage markers, including Chi3l3 (Ym1), which proved to reflect recruitment or expansion of a unique population of Chi3l3/Arginase-1 double-positive “M2-polarized” tumor-infiltrating myeloid cells. Anti-PD-1H alone had only modest effects on tumor growth and number of Cd8+ TILs. However, PD-1H-expressing TILs were significantly increased by single agent DAC, and DAC treatment followed by anti-PD-1H produced the strongest increase in Cd8+ TILS, inhibition of tumor growth, and prolongation of survival. Conclusions: Treatment with DAC alone, and DAC plus anti-PD-1H, inhibits PDAC tumor growth in the KPC model and produces changes in tumor-infiltrating lymphoid and myeloid cell populations, with an additive therapeutic benefit from combining the two agents. Since the influx of M2-polarized macrophages induced by DAC is predicted to antagonize the anti-tumor effects, future work should investigate eliminating or reprogramming these cells.
Project description:Background & Aims: Pancreatic ductal adenocarcinomas (PDAC) are characterized by fibrosis and an abundance of cancer-associated fibroblasts (CAFs). We investigated strategies to disrupt interactions among CAFs, the immune system, and cancer cells, focusing on adhesion molecule cadherin 11 (CDH11), which has been associated with other fibrotic disorders and is expressed by activated fibroblasts. Methods: We compared levels of CDH11 mRNA in human pancreatitis and pancreatic cancer tissues and cells, compared with normal pancreas, and measured levels of CDH11 protein in human and mouse pancreatic lesions and normal tissues. We crossed p48-Cre;LSL-KrasG12D/+;LSL-Trp53R172H/+ (KPC) mice with CDH11-knockout mice and measured survival times of offspring. Pancreata were collected and analyzed by histology, immunohistochemistry, and (single-cell) RNA sequencing; RNA and proteins were identified by imaging mass cytometry. Some mice were given injections of PD1 antibody or gemcitabine and survival was monitored. Pancreatic cancer cells from KPC mice were subcutaneously injected into Cdh11+/+ and Cdh11–/– mice and tumor growth was monitored. Pancreatic cancer cells (mT3) from KPC mice (C57BL/6), were subcutaneously injected into Cdh11+/+ (C57BL/6J) mice and mice were given injections of antibody against CDH11, gemcitabine, or small molecule inhibitor of CDH11 (SD133) and tumor growth was monitored. Results: Levels of CDH11 mRNA and protein were significantly higher in CAFs than in pancreatic cancer epithelial cells, human or mouse pancreatic cancer cell lines, or immune cells. KPC/Cdh11+/– and KPC/Cdh11–/– mice survived significantly longer than KPC/Cdh11+/+ mice. Markers of stromal activation entirely surrounded pancreatic intraepithelial neoplasias in KPC/Cdh11+/+ mice and incompletely in KPC/Cdh11+/– and KPC/Cdh11–/– mice, whose lesions also contained fewer FOXP3+ cells in the tumor center. Compared with pancreatic tumors in KPC/Cdh11+/+ mice, tumors of KPC/Cdh1+/– mice had increased markers of antigen processing and presentation; more lymphocytes and cytokines associated with lymphocyte infiltration; decreased extracellular matrix components; and reductions in markers and cytokines associated with immunosuppression. Administration of the PD1 antibody did not prolong survival of KPC mice with 0, 1, or 2 alleles of Cdh11. Gemcitabine extended survival only of KPC/Cdh11+/– and KPC/Cdh11–/– mice or reduced subcutaneous tumor growth in mT3 engrafted Cdh11+/+ mice given in combination with the CDH11 antibody. A small molecule inhibitor of CDH11 reduced growth of pre-established mT3 subcutaneous tumors only if T and B cells were present in mice. Conclusions: Knockout or inhibition of CDH11, which is expressed by CAFs in the pancreatic tumor stroma, reduces growth of pancreatic tumors, increases their response to gemcitabine, and significantly extends survival of mice. CDH11 promotes immunosuppression and extracellular matrix deposition, and might be developed as a therapeutic target for pancreatic cancer.