Project description:BACKGROUND: The gut microbiota plays an important role in human health and disease by acting as a metabolic organ. Metagenomic sequencing has shown how dysbiosis in the gut microbiota is associated with human metabolic diseases such as obesity and diabetes. Modeling may assist to gain insight into the metabolic implication of an altered microbiota. Fast and accurate reconstruction of metabolic models for members of the gut microbiota, as well as methods to simulate a community of microorganisms, are therefore needed. The Integrated Microbial Genomes (IMG) database contains functional annotation for nearly 4,650 bacterial genomes. This tremendous new genomic information adds new opportunities for systems biology to reconstruct accurate genome scale metabolic models (GEMs). RESULTS: Here we assembled a reaction data set containing 2,340 reactions obtained from existing genome-scale metabolic models, where each reaction is assigned with KEGG Orthology. The reaction data set was then used to reconstruct two genome scale metabolic models for gut microorganisms available in the IMG database Bifidobacterium adolescentis L2-32, which produces acetate during fermentation, and Faecalibacterium prausnitzii A2-165, which consumes acetate and produces butyrate. F. prausnitzii is less abundant in patients with Crohn's disease and has been suggested to play an anti-inflammatory role in the gut ecosystem. The B. adolescentis model, iBif452, comprises 699 reactions and 611 unique metabolites. The F. prausnitzii model, iFap484, comprises 713 reactions and 621 unique metabolites. Each model was validated with in vivo data. We used OptCom and Flux Balance Analysis to simulate how both organisms interact. CONCLUSIONS: The consortium of iBif452 and iFap484 was applied to predict F. prausnitzii's demand for acetate and production of butyrate which plays an essential role in colonic homeostasis and cancer prevention. The assembled reaction set is a useful tool to generate bacterial draft models from KEGG Orthology.
Project description:Several gut microbial species within the Faecalibacterium genus have emerged as promising next-generation probiotics (NGP) due to their multifunctional protective effects against gastrointestinal and systemic disorders. To enable clinical studies and further applications, improved methods for cultivating Faecalibacterium must be developed in compliance with current Good Manufacturing Practice regulations, which is complicated by its oxygen sensitivity and complex nutritional requirements. Different yeast-based nutrients (YBNs), including yeast extracts (YEs) and yeast peptones (YPs), are ubiquitously used when cultivating microbes to supply a broad range of macro- and micronutrients. In this study, we evaluated six experimental YBNs, namely three YEs, two YPs and a yeast cell wall product (YCW), and eight B-vitamins in the cultivation of Faecalibacterium duncaniae A2-165, former Faecalibacterium prausnitzii, using growth assays in microtitre plates, dose-effect studies in Hungate tube fermentations and fully controlled bioreactor experiments. We demonstrated that YEs promote F. duncaniae A2-165 growth in a nutritionally limited medium, while YPs and YCW lacked essential growth factors for enabling cell propagation. High cell density was obtained in controlled bioreactors using a medium containing 2-4% of a selected YE and 1% casein peptone (3.4 ± 1.7 × 109 -5.1 ± 1.3 × 109 cells mL-1 ). Among all tested B-vitamins, we identified B5 as a strong growth promoter. Replacing casein peptone with YP and supplementing with vitamin B5 further increased biomass by approximately 50% (6.8 ± 1.7 × 109 cells mL-1 ). Hence, empirical selection of YE, YP and B5 allowed formulation of a high-yielding animal allergen-free nutritive medium to produce F. duncaniae A2-165. Selecting nutritionally suitable YBNs and combining these with other key nutrients are important steps for optimizing production of NGP with high yields and lower cost.
Project description:We explored the transcriptional response of Faecalibacterium prausnitzii A2-165 when exposed to cell-free supernatants from different Lactobacillus, Streptococcus and Lactococcus strains. For that, we sequenced its RNA and looked for significant differences in the expression levels among the supernatants groups.
Project description:The promising next-generation probiotic Faecalibacterium prausnitzii is one of the most abundant acetate-consuming, butyrate-producing bacteria in the healthy human gut. Yet, little is known about how acetate availability affects this bacterium's gene expression strategies. Here, we investigated the effect of acetate on temporal changes in the transcriptome of F. duncaniae A2-165 cultures using RNA sequencing. We compared gene expression patterns between two growth phases (early stationary vs. late exponential) and two acetate levels (low: 3 mM vs. high: 23 mM). Only in low-acetate conditions, a general stress response was activated. In high-acetate conditions, there was greater expression of genes related to butyrate synthesis and to the importation of B vitamins and iron. Specifically, expression was strongly activated in the case of the feoAABC operon, which encodes a FeoB ferrous iron transporter, but not in the case of the feoAB gene, which encodes a second putative FeoAB transporter. Moreover, excess ferrous iron repressed feoB expression but not feoAB. Lastly, FeoB but not FeoAB peptides from strain A2-165 were found in abundance in a healthy human fecal metaproteome. In conclusion, we characterized two early-stationary transcriptomes based on acetate consumption and this work highlights the regulation of feoB expression in F. duncaniae A2-165.
Project description:Faecalibacterium prausnitzii strain A2-165 was previously reported to have anti-inflammatory properties and prevent colitis in a TNBS model. We compared the immunomodulatory properties of strain A2-165 to four different F. prausnitzii isolates and eight abundant intestinal commensals using human dendritic cells (DCs) and mouse BMDCs in vitro. Principal component analysis revealed that the cytokine response to F. prausnitzii A2-165 is distinct from the other strains in eliciting high amounts of IL-10 secretion. The mouse DNBS model of relapsing IBD was used to compare the protective effects of F. prausnitzii A2-165 and Clostridium hathewayi, a low secretor of IL-10, on the Th1-driven inflammatory response to DNBS; attenuation of disease parameters was only observed with F. prausnitzii. In an in vivo mouse model of nasal tolerance to ovalbumin, F. prausnitzii A2-165 enhanced ovalbumin-specific T cell proliferation and reduced the proportion of IFN-?(+) T cells in CLNs. Similarly, in vitro F. prausnitzii A2-165 stimulated BMDCs increased ovalbumin-specific T cell proliferation and reduced the number of IFN-?(+) T cells. These mechanisms may contribute to the anti-inflammatory effects of F. prausnitzii in colitis and support the notion that this abundant bacterium might contribute to immune homeostasis in the intestine via its anti-inflammatory properties.