Project description:Male sterility is an important trait in hybrid crop breeding. Thermo-sensitive genic male sterility (TGMS) lines, which are male-sterile at restrictive (high) temperatures but convert to male-fertile at permissive (low) temperatures, have been widely utilized in two-line hybrid rice breeding3. However, the molecular mechanism underlying TGMS remains unclear. Here we show that the rice (Oryza sativa L.) thermo-sensitive genic male sterile gene 5 (tms5) locus, which in 2010 was present in cultivars occupying more than 70% (2.4 million hectares) of two-line hybrid rice-growing land in China, confers the TGMS trait through a loss-of-function mutation of RNase ZS1, resulting in failure to mediate mRNA decay of three temperature-responsive ubiquitin fusion ribosomal protein L40 genes (UbL40). TMS5 encodes an evolutionarily conserved endonuclease, RNase ZS1. RNase ZS1 can process tRNAs in vitro, but does not do so in vivo due to its localization in the cytoplasm. Defective RNase ZS1 in tms5 plants leads to over-accumulation of UbL401, UbL402 and UbL404 mRNAs at restrictive but not permissive temperatures. Furthermore, over-expression of UbL401 and UbL404 in wild-type plants causes male sterility, while knockdown of UbL401 and UbL404 in tms5 partially restores its fertility. Our results uncover a novel mechanism of RNase ZS1-mediated UbL40 mRNA decay which controls TGMS in rice and has potential applications in hybrid breeding not only of rice but also of other crops. Examination of differences in mRNA accumulation between 93-11, NIL5 and NIL8.
Project description:Male sterility is an important trait in hybrid crop breeding. Thermo-sensitive genic male sterility (TGMS) lines, which are male-sterile at restrictive (high) temperatures but convert to male-fertile at permissive (low) temperatures, have been widely utilized in two-line hybrid rice breeding3. However, the molecular mechanism underlying TGMS remains unclear. Here we show that the rice (Oryza sativa L.) thermo-sensitive genic male sterile gene 5 (tms5) locus, which in 2010 was present in cultivars occupying more than 70% (2.4 million hectares) of two-line hybrid rice-growing land in China, confers the TGMS trait through a loss-of-function mutation of RNase ZS1, resulting in failure to mediate mRNA decay of three temperature-responsive ubiquitin fusion ribosomal protein L40 genes (UbL40). TMS5 encodes an evolutionarily conserved endonuclease, RNase ZS1. RNase ZS1 can process tRNAs in vitro, but does not do so in vivo due to its localization in the cytoplasm. Defective RNase ZS1 in tms5 plants leads to over-accumulation of UbL401, UbL402 and UbL404 mRNAs at restrictive but not permissive temperatures. Furthermore, over-expression of UbL401 and UbL404 in wild-type plants causes male sterility, while knockdown of UbL401 and UbL404 in tms5 partially restores its fertility. Our results uncover a novel mechanism of RNase ZS1-mediated UbL40 mRNA decay which controls TGMS in rice and has potential applications in hybrid breeding not only of rice but also of other crops.
Project description:Male sterility is an important trait in hybrid crop breeding. Thermo-sensitive genic male sterility (TGMS) lines, which are male-sterile at restrictive (high) temperatures but convert to male-fertile at permissive (low) temperatures, have been widely utilized in two-line hybrid rice breeding. However, the molecular mechanism underlying TGMS remains unclear. Here we show that the rice (Oryza sativa L.) thermo-sensitive genic male sterile gene 5 (tms5) locus, which in 2010 was present in cultivars occupying more than 71% (2.3 million hectares) of two-line hybrid rice-growing land in China, confers the TGMS trait through a loss-of-function mutation of RNase ZS1, resulting in failure to mediate mRNA decay of three temperature-responsive ubiquitin fusion ribosomal protein L40 genes (UbL40) genes. RNase ZS1, a member of the evolutionarily conserved endonuclease, processed tRNAs in vitro, but does not do so in vivo due to its localization in the cytoplasm. Defective RNase ZS1 in tms5 plants leads to over-accumulation of UbL401, UbL402 and UbL404 mRNAs at restrictive but not permissive temperatures. Over-expression of UbL401 and UbL404 in wild-type plants caused male sterility, whereas knockdown of UbL401 and UbL404 in tms5 plants partially restored the male fertility at restrictive temperatures. Our results uncover a novel mechanism of RNase ZS1-mediated UbL40 mRNA decay which controls TGMS in rice and has potential applications not only of rice but also of other crops. To address whether RNase ZS1 involves in mRNA metabolism, whole-genome microarray was performed using RNA from young panicles of wild type (AnN and ZH11) and tms5 (AnS-1 and Os02g12290iL1) plants grown at permissive and restrictive temperatures.
Project description:Male sterility is an important trait in hybrid crop breeding. Thermo-sensitive genic male sterility (TGMS) lines, which are male-sterile at restrictive (high) temperatures but convert to male-fertile at permissive (low) temperatures, have been widely utilized in two-line hybrid rice breeding. However, the molecular mechanism underlying TGMS remains unclear. Here we show that the rice (Oryza sativa L.) thermo-sensitive genic male sterile gene 5 (tms5) locus, which in 2010 was present in cultivars occupying more than 80% (2.6 million hectares) of two-line hybrid rice-growing land in China, confers the TGMS trait through a loss-of-function mutation of RNase ZS1, resulting in failure to mediate mRNA decay of three temperature-responsive ubiquitin fusion ribosomal protein L40 genes (UbL40) genes. RNase ZS1, a member of the evolutionarily conserved endonuclease, processed tRNAs in vitro, but does not do so in vivo due to its localization in the cytoplasm. Defective RNase ZS1 in tms5 plants leads to over-accumulation of UbL401, UbL402 and UbL404 mRNAs at restrictive but not permissive temperatures. Over-expression of UbL401 and UbL404 in wild-type plants caused male sterility, whereas knockdown of UbL401 and UbL404 in tms5 plants partially restored the male fertility at restrictive temperatures. Our results uncover a novel mechanism of RNase ZS1-mediated UbL40 mRNA decay which controls TGMS in rice and has potential applications not only of rice but also of other crops. To address whether RNase ZS1 involves in mRNA metabolism, degradome sequencing was performed using RNA from young panicles of wild type (ZH11) and tms5 (Os02g12290iL1) plants grown at restrictive temperatures.
Project description:Male sterility is an important trait in hybrid crop breeding. Thermo-sensitive genic male sterility (TGMS) lines, which are male-sterile at restrictive (high) temperatures but convert to male-fertile at permissive (low) temperatures, have been widely utilized in two-line hybrid rice breeding. However, the molecular mechanism underlying TGMS remains unclear. Here we show that the rice (Oryza sativa L.) thermo-sensitive genic male sterile gene 5 (tms5) locus, which in 2010 was present in cultivars occupying more than 80% (2.6 million hectares) of two-line hybrid rice-growing land in China, confers the TGMS trait through a loss-of-function mutation of RNase ZS1, resulting in failure to mediate mRNA decay of three temperature-responsive ubiquitin fusion ribosomal protein L40 genes (UbL40) genes. RNase ZS1, a member of the evolutionarily conserved endonuclease, processed tRNAs in vitro, but does not do so in vivo due to its localization in the cytoplasm. Defective RNase ZS1 in tms5 plants leads to over-accumulation of UbL401, UbL402 and UbL404 mRNAs at restrictive but not permissive temperatures. Over-expression of UbL401 and UbL404 in wild-type plants caused male sterility, whereas knockdown of UbL401 and UbL404 in tms5 plants partially restored the male fertility at restrictive temperatures. Our results uncover a novel mechanism of RNase ZS1-mediated UbL40 mRNA decay which controls TGMS in rice and has potential applications not only of rice but also of other crops.
Project description:Male sterility is an important trait in hybrid crop breeding. Thermo-sensitive genic male sterility (TGMS) lines, which are male-sterile at restrictive (high) temperatures but convert to male-fertile at permissive (low) temperatures, have been widely utilized in two-line hybrid rice breeding. However, the molecular mechanism underlying TGMS remains unclear. Here we show that the rice (Oryza sativa L.) thermo-sensitive genic male sterile gene 5 (tms5) locus, which in 2010 was present in cultivars occupying more than 71% (2.3 million hectares) of two-line hybrid rice-growing land in China, confers the TGMS trait through a loss-of-function mutation of RNase ZS1, resulting in failure to mediate mRNA decay of three temperature-responsive ubiquitin fusion ribosomal protein L40 genes (UbL40) genes. RNase ZS1, a member of the evolutionarily conserved endonuclease, processed tRNAs in vitro, but does not do so in vivo due to its localization in the cytoplasm. Defective RNase ZS1 in tms5 plants leads to over-accumulation of UbL401, UbL402 and UbL404 mRNAs at restrictive but not permissive temperatures. Over-expression of UbL401 and UbL404 in wild-type plants caused male sterility, whereas knockdown of UbL401 and UbL404 in tms5 plants partially restored the male fertility at restrictive temperatures. Our results uncover a novel mechanism of RNase ZS1-mediated UbL40 mRNA decay which controls TGMS in rice and has potential applications not only of rice but also of other crops.
Project description:Cotton (Gossypium spp.) is one of the most important economic crops and exhibits yield-improving heterosis in specific hybrid combinations. The genic male-sterility system is the main strategy used for producing heterosis in cotton. To better understand the mechanisms of male sterility in cotton, we carried out label-free quantitative proteomics analysis in the anthers of two near-isogenic lines, the male-sterile line 1355A and the male-fertile line 1355B, the two isogenic lines. These experiments, along with bioinformatics analyses, identified 124 proteins from the anthers at uninucleate pollen stage (stage 8) that were significantly differentially expressed between these two lines.
Project description:Using the HiSeqTM 2000 sequencing platform, the anther transcriptome of photo thermo sensitive genic male sterile lines (PTGMS) rice Y58S and P64S (Peiâai 64S) were analyzed at the fertility sensitive stage under cold stress.These datas would be most beneficial for further studies investigating the molecular mechanisms of rice responses to cold stress.
Project description:Small RNA and PARE sequencing in rice (photoperiod sensitive male sterility lines and wild type) panicles under long-day and short-day conditions