Project description:Diamond Blackfan anemia is a congenital bone marrow failure syndrome characterized by hypoproliferative anemia, often with associated physical abnormalities. Perturbations of the ribosome appear critically important to the development of DBA, as alterations in 9 different ribosomal protein genes have been identified in multiple unrelated families, along with rarer abnormalities of additional ribosomal proteins. However, presently only 50-60% of patients have an identifiable genetic lesion by ribosomal protein gene sequencing. Using genome-wide SNP array to evaluate for regions of recurrent copy variation, we identified 2 patients with mosaic loss in the region of the the chromosome 5-deleted region involved in somatically-acquired 5q- myelodysplastic syndrome.
Project description:Diamond Blackfan anemia is a congenital bone marrow failure syndrome characterized by hypoproliferative anemia, often with associated physical abnormalities. Perturbations of the ribosome appear critically important to the development of DBA, as alterations in 9 different ribosomal protein genes have been identified in multiple unrelated families, along with rarer abnormalities of additional ribosomal proteins. However, presently only 50-60% of patients have an identifiable genetic lesion by ribosomal protein gene sequencing. Using genome-wide SNP array to evaluate for regions of recurrent copy variation, we identified 2 patients with mosaic loss in the region of the the chromosome 5-deleted region involved in somatically-acquired 5q- myelodysplastic syndrome. Samples were analyzed on Illumina HumanOmni1_Quad, HumanOmniExpress, or HumanOmniExpressExome Genotyping bead arrays; 1 patient was available for longitudinal study including assessment of mosaicism in lymphoid and myeloid-enriched cell populations before treatement with lenolidamide. Similar studies were performed while on lenoldamide therapy in peripheral blood at 3 months and in bone marrow at 20 months of treatment. One patient with mosaic deletion of 5q was available for longitudinal study including assessment of gene expression in bone marrow before and during treatment with lenalidomide.
Project description:Ineffective erythropoiesis, the death of maturing erythroid cells, is a common cause of anemia. To better understand why this occurs, we studied the fates and adaptations of single erythroid marrow cells from individuals with Diamond Blackfan anemia (DBA), del(5q) myelodysplastic syndrome (del(5q) MDS), and normal controls, and defined an unhealthy (vs. healthy) differentiation trajectory, using velocity pseudotime and cell surface protein assessment. The pseudotime trajectories diverge immediately after the cells upregulate transferrin receptor (CD71), import iron, and initiate heme synthesis, although cell death occurs much later. Cells destined to die highly express heme-responsive genes, including ribosomal protein and globin genes. In contrast, surviving cells downregulate heme synthesis, while upregulating DNA damage response, hypoxia, and HIF1 pathways. Surprisingly, 24±12% of cells from controls follow the unhealthy trajectory, implying that heme also regulates cell fate decisions during normal red cell production. Del(5q) MDS (unlike DBA) results from somatic mutations, so many normal (unmutated) erythroid cells persist. By independently tracking their trajectory, we gained insight into why they cannot expand to prevent anemia. In addition, we show that intron retention is especially prominent during red cell differentiation. The additional information provided by messages with retained introns also allowed us to align data from multiple independent experiments and thus accurately query the transcriptomic changes that occur as single erythroid cells mature.
Project description:Transcriptome profile of highly purified multipotential (P), erythroid (E), and myeloid (M) bone marrow progenitors from three RPS19 mutated Diamond-Blackfan anemia and six control human subjects. Two group comparison of sex and age matched subjects. Bone marrow progenitors, gene expression profiling, Diamond-Blackfan anemia, RPS19
Project description:This RNA sequencing experiment is part of the study "Preclinical animal model of Diamond-Blackfan anemia with single amino acid mutation of ribosomal protein Rps19". A mouse model with arginine 67 mutation of ribosomal protein Rps19 develops features characteristic of human Diamond-Blackfan anemia, a rare bone marrow failure syndrome. These include hematologic dysfunctions, early onset growth delay, intrinsic anemia, severe craniofacial, skeletal, urogenital, cardiovascular, and cerebral abnormalities leading to premature lethality during the adolescence of the mouse. This model exhibits cell intrinsic activation of the Trp53 signaling pathway in hematopoietic stem cells (HSCs) leading to reduced erythroid lineage development that may be rescued after inactivation of the tumor suppressor Trp53. Using preliminary RNA sequencing study we identify a set of non-canonical components of the p53 signaling pathway which with high likelihood mediate the wide range of pathologies associated with DBA, the experiment if followed up by single cell transcriptome analysis of bone marrow hematopoietic progenitors and RNA sequencing of E14.5 fetal liver from wild-type control and Rps19R67∆/R67∆, Rps19R67∆/R67∆ Trp53−/− and Trp53−/− mutant embryos.